
LECTURE NOTES

ON

(20A02602T)
Digital Computing Platforms

III B. Tech II Semester (R20)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

GOKULA KRISHNA COLLEGE OF ENGINEERING
(Sponsored by Sri Krishna Educational Society)

Affiliated to JNTUA, Approved by AICTE, Accredited by NACC
Behind R.T.C Depot, Sullurupet, Tirupati Dist, A.P.(INDIA) PIN:524121

JNTUA B.Tech. R20 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (EEE)– III-II Sem L T P C

 3 0 0 3

(20A02602T) DIGITAL COMPUTING PLATFORMS

Course Objectives:

 Architecture and designing of 8086 Microprocessor with Assembling language programming

and interfacing with various modules

 Understand the Interfacing of 8086 with various advanced communication devices

 Designing of 8051 Microcontroller with Assembling language programming and interfacing

with various modules

 To know about Assembly Language Programs for the Digital Signal Processors and usage of

Interrupts

 To understand Xilinx programming and understanding of Spartan FPGA board

Course Outcomes:

 Understand the basic architecture & pin diagram of 8086 microprocessor, 8051

Microcontroller, DSP Processor and FPGA Processors

 Apply the concepts to design Assembly language programming to perform a given task,

Interrupt service routines for all interrupt types

 Design Real time applications by writing Assembly Language Programs for the Digital Signal
Processors, Xilinx programming for Spartan FPGA boards and use Interrupts for real-time

control applications

 Analyse various real time systems by using various controllers

UNIT I INTRODUCTION TO MICROPROCESSORS
Historical background- Evolution of microprocessors up to 64-bit. Architecture of 8086

microprocessor, special function of general purpose registers. 8086 flag registers and functions of 8086

flags – Addressing modes of 8086 – Instruction set of 8086 – Assembler directives - Pin diagram 8086
– Minimum mode and maximum mode of operation - Timing diagrams - CISC and ARM Processors.

UNIT IIASSEMBLY LANGUAGE PROGRAMMING & I/O INTERFACE

Assembler directives – macros – simple programs involving logical – branch instructions – sorting –
evaluating arithmetic expressions - string manipulations – 8255 PPI - various modes of operation - A/D

- D/A converter interfacing, Memory interfacing to 8086 – interrupt structure of 8086 – vector interrupt

table – interrupt service routine – interfacing interrupt controller 8259 - Need of DMA – serial
communication standards – serial data transfer schemes.

UNIT III8051 MICRO CONTROLLER PROGRAMMING AND APPLICATIONS

Introduction to micro controllers, Functional block diagram, Instruction sets and addressing modes,

interrupt structure – Timer – I/O ports – serial communication. Data transfer, manipulation, Control and
I/O instructions – simple programming exercises key board and display interface – Closed loop control

of servo motor – stepper motor control.

UNIT IVINTRODUCTION TO TMS320LF2407 DSP CONTROLLER
Basic architectural features - Physical Memory - Software Tools. Introduction to Interrupts - Interrupt

Hierarchy - Interrupt Control Registers. C2xx DSP CPU and Instruction Set: Introduction & code

Generation - Components of the C2xx DSP core - Mapping External Devices to the C2xx core -
peripheral interface - system configuration registers - Memory - Memory Addressing Modes -

Assembly Programming Using the C2xx DSP Instruction set.

UNIT V FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

Introduction to Field Programmable Gate Arrays – CPLD Vs FPGA – Types of FPGA – Xilinx,
XC3000 series - Configurable logic Blocks (CLB) – Input / Output Block (IOB) – Programmable

Interconnect Point (PIP) – Xilinx 4000 series – HDL programming –overview of Spartan 3E and Virtex

II pro FPGA boards- case study.

Textbooks:

1. Ramesh S. Gaonkar, DI Architecture Programming and Applications with8085, Penram Intl.

Publishing, 6th Edition, 2013

2. Ray A. K., Bhurchandi K. M., Advanced Microprocessor and Peripherals, Tata McGraw-
Hill Publications, 3rd Edition, 2013.

Reference Books:

JNTUA B.Tech. R20 Regulations

1. Microprocessor and Interfacing by Douglas V Hall, 2nd Edition, Tata McGraw hill, 1992
2. Microprocessor, Nilesh B Bahadure, PHI, 2010.

3. The 8051 Micro Controller Architecture, Programming and Applications by Kenneth J

Ayala, Pearson International publishing (India).

4. Hamid A. Tolyat, DSP Based Electro Mechanical Motion Control, CRC press, 2004.
5. Application Notes from the webpage of Texas Instruments.

6. XC 3000 series datasheets (version 3.1). Xilinx Inc., USA, 1998

7. XC 4000 series datasheets (version 1.6). Xilinx Inc., USA, 1999
8. Wayne Wolf, FPGA based system design, Prentice hall, 2004.

Online Learning Resources:
1. https://nptel.ac.in/courses/106108100

2. https://nptel.ac.in/courses/108105102

3. https://nptel.ac.in/courses/117108040

https://nptel.ac.in/courses/106108100
https://nptel.ac.in/courses/108105102
https://nptel.ac.in/courses/117108040

INTRODUCTION:

Microprocessor acts as a CPU in a microcomputer. It is present as a single ICchip in a

icrocomputer.

Microprocessor is the heart of the machine.

A Microprocessor is a device, which is capable of

1. Receiving Input 2 Performing Computations 3. Storing data and instructions

4. Display the results 5. Controlling all the devices that perform the above 4 functions.

The device that performs tasks is called Arithmetic Logic Unit (ALU). A single chip called

Microprocessor performs these tasks together with other tasks.

instructions from a storage device called memory accepts binary data as input and processes data

according to those instructions and provides results as output

EVOLUTION OF MICROPROCESSORS:
The microprocessor age began with the advancement in the IC technology to put all necessary
functions of a CPU into a single chip.

Intel started marketing its first microprocessor in the name of Intel 4004 in 1971. This was a4-bit

microprocessor having 16-pins in a single chip of PMOS technology. This was called the first generation

microprocessor. The Intel 4004 along with few other devices was used for making calculators. The 4004

instruction set contained only 45 instructions. Later in 1971, INTEL Corporation released the 8008 an

extended 8-bit version of the 4004 microprocessor. The 8008 addressed an expanded memory size

(16KB) and 48 instructions.

Limitations of first generation microprocessors is small memory size, slow speed and instruction set
limited its usefulness.

Second generation microprocessors:

The second generation microprocessor using NMOS technology appeared in the market in the year 1973.

The Intel 8080, an 8-bit microprocessor, of NMOS technology was developed in the year 1974 which

required only two additional devices to design a functional CPU. The

advantages of second generation microprocessors were

Large chip size (170x200 mil) with 40-pins. More chips on decoding circuits.

Ability to address large memory space (64-K Byte) and I/O ports(256). More powerful instruction sets.

Dissipate less power.

Better interrupt handling facilities. Cycle time reduced to half (1.3 to 9 m

sec.)

Sized 70x200 mil) with 40-pins. Less Support Chips Required

Used Single Power Supply Faster Operation

The 8080 microprocessor addresses more memory and execute additional instructions, but executes

them 10 times faster than 8008.The 8080 has memory of 64 KB whereas for 8008 16 KB only. In 1977,

INTEL, introduced 8085 which was an updated version of 8080 last 8-bit processor.

The main advantages of 8085 were its internal clock generator, internal system controller and

higher clock frequency.

Third Generation Microprocessor:

In 1978, INTEL released the 8086 microprocessor, a year later it released 8088. Both devices were 16 bit

microprocessors, which executed instructions in less than 400ns.The 8086 and 8088 addresses 1MB of

memory and rich instruction set to 246.16-bit processors were designed using HMOS technology. The

Intel 80186 and 80188 were the improved versions of Intel 8086 and8088, respectively. In addition to 16-

bit CPU, the 80186 and 80188 had programmable peripheral devices integrated on the same package.

Fourth Generation Microprocessor:

The single chip 32-bit microprocessor was introduced in the year 1981 by Intel as iAPX 432. The other

4
th

generation microprocessors were; Bell Single Chip Bellmac-32, Hewlett-Packard, National NSl

6032,Texas Instrument99000. Motorola 68020 and 68030. The Intel in the year 1985 announced the 32-

bit microprocessor(80386). The 80486 has already been announced and is also a 32-bit microprocessor.

The 80486 is a combination 386 processor a math coprocessor, and a cache memory controller on a single
chip.

The Pentium is a 64-bit superscalar processor. It can execute more than one instruction at a time

and has a full 64-bit data bus and 32-bit address bus. Its performance is double than 80486.

Features of 8086:

It provides 14, 16 -bit registers.

data bus AD0- AD15 and A16 A19.

-fetches up to 6 instruction bytes from memory and queues them in order to speed up

instruction execution.

40 pin dual in line package.

Architecture of 8086:

8086 has two blocks BIU and EU.

The BIU performs all bus operations such as instruction fetching, reading and writing operands for

memory and calculating the addresses of the memory operands. The instruction bytes are transferred

to the instruction queue.

EU executes instructions from the instruction byte queue.

Both units operate asynchronously to give the 8086 an overlapping instruction fetch and execution

mechanism which is called as Pipelining. This results in efficient use of the system bus and system

performance.

BIU contains Instruction queue, Segment registers, IP, address adder.

-

EU contains control circuitry, Instruction decoder, ALU, Flag register.

The BIU is responsible for performing all external bus operations.
Specifically it has the following functions:

Instructions fetch Instruction queuing, Operand fetch and storage, Address relocation and Bus control.

The BIU uses a mechanism known as an instruction stream queue to implement pipeline architecture.

This queue permits pre-fetch of up to six bytes of instruction code. Whenever the queue of the BIU

It provides full 16 bit bidirectional data bus and
20 bit address bus.

is not full, it has room for at least two more bytes and at the same time the EU is not requesting it to

read or write operands from memory, the BIU is free to look ahead in the program by pre-

fetching the next sequential instruction.

These pre-fetching instructions are held in its FIFO queue. With its 16 bit data bus, the BIU fetches two

instruction bytes in a single memory cycle.

After a byte is loaded at the input end of the queue, it automatically shifts up through the FIFO to the
empty location nearest the output.

The EU accesses the queue from the output end. It reads one instruction byte after the other from the
output of the queue. If the queue is full and the EU is not requesting access to operand in memory.

These intervals of no bus activity, which may occur between bus cycles, are known as idle state.

If the bus is already in the process of fetching an instruction when the EU request it to read or write

operands from memory or I/O, the BIU first completes the instruction fetch bus cycle before initiating the

operand read / write cycle.

The BIU also contains a dedicated adder which is used to generate the 20 bit physical address that is

output on the address bus. This address is formed by adding an appended 16 bit segment address and a 16

bit offset address.

For example: The physical address of the next instruction to be fetched is formed by combining the

current contents of the code segment CS register and the current contents of the instruction pointer IP

register.

The BIU is also responsible for generating bus control signals such as those for memory read or write
and I/O read or write.

Execution Unit:

The EU extracts instructions from top of the queue in the BIU, decodes them, generates operands if

necessary, passes them to the BIU and requests it to perform the read or write bus cycles to memory or

I/O and perform the operation specified by the instruction on the operands.

During the execution of the instruction, the EU tests the status and control flags and updates them based
on the results of executing the instruction.

If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted to top of the

queue.

When the EU executes a branch or jump instruction, it transfers control to a location corresponding to

another set of sequential instructions.

When ever this happens, the BIU automatically resets the queue and then begins to fetch instructions

from this new location to refill the queue.

Register organization of 8086:

The 8086 has four groups of the user accessible internal registers. They are the instruction pointer, four

data registers, four pointer and index register, four segment registers. The 8086 has a total of fourteen

16-bit registers including a 16 bit register called the status register, with 9 of bits implemented for

status and control flags.

There are four different 64 KB segments for instructions, stack, data and extra data. To Specify

where in 1 MB of processor memory these 4 segments are located the processor uses four segment

registers:

Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor

instructions. The processor uses CS segment for all accesses to instructions referenced by instruction

pointer (IP) register. CS register cannot be changed directly. The CS register is automatically updated

during far jump, far call and far return instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack. By

default, the processor assumes that all data referenced by the stack pointer (SP) and base pointer (BP)

registers is located in the stack segment. SS register can be changed directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By

default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and

index register (SI, DI) is located in the data segment.DS register can be changed directly using POP and

LDS instructions.

Accumulator register consists of two 8-bit registers AL and AH, which can be combined together and

used as a 16-bit register AX. AL in this case contains the low order byte of the word, and AH contains

the high-order byte. Accumulator can be used for I/O operations and string manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined together and used as a

16-bit register BX. BL in this case contains the low-order byte of the word, and BH contains the high-

order byte. BX register usually contains a data pointer used for based, based indexed or register indirect

addressing.

Count register consists of two 8-bit registers CL and CH, which can be combined together and used as

a 16-bit register CX. When combined, CL register contains the low order byte of the word, and CH

contains the high-order byte. Count register can be used in Loop, shift/rotate instructions and as a

counter in string manipulation,.

Data register consists of two 8-bit registers DL and DH, which can be combined together and used as a

16-bit register DX. When combined, DL register contains the low order byte of the word, and DH

contains the high-order byte. Data register can be used as a port number in I/O operations. In integer 32-

bit multiply and divide instruction the DX register contains high-order word of the initial or resulting

number.

Stack Pointer (SP) is a 16-bit register pointing to program stack.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is usually used for

based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register indirect

addressing, as well as a source data address in string manipulation instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and register indirect

addressing, as well as a destination data address in string manipulation instructions.

Instruction Pointer (IP) register acts as a program counter for 8086. It points to the address of the next

instruction to be executed Its content is automatically incremented when the program execution of a

program proceeds further. The contents of IP and CS register are used to compute the memory address of

the instruction code to be fetched.

General purpose register Segment register Pointer and Index

Flag register of 8086: It is a 16-bit register, also called flag register or Program Status Word (PSW).

Seven bits remain unused while the rest nine are used to indicate the conditions of flags. The status flags

of the register are shown below in Fig.

Out of nine flags, six are condition flags and three are control flags. The control flags

are TF (Trap), IF (Interrupt) and DF (Direction) flags, which can be set/reset by the

programmer, while the condition flags [OF (Overflow), SF (Sign), ZF (Zero), AF (Auxiliary

Carry), PF (Parity) and CF (Carry)] are set/reset depending on the results of some arithmetic or

logical operations during program execution.

CF is set if there is a carry out of the MSB position resulting from an addition operation or if a
borrow is needed out of the MSB position during subtraction.

PF is set if the lower 8-bits of the result of an operation contains an even number if

there is a carry out of bit 3 resulting from an addition operation or borrow required from bit 4 into

bit 3 during subtraction operation.

ZF is set if the result of an arithmetic or logical operation is zero.

SF is set if the MSB of the result of an operation is 1. SF is used with unsigned numbers.

OF is used only for signed arithmetic operation and is set if the result is too large to be fitted in the
number of bits available to accommodate it.

The three control flags of 8086 are TF, IF and DF. These three flags are programmable,

i.e., can be set/reset by the programmer so as to control the operation of the processor.

When TF (trap flag) is set (=1), the processor operates in single stepping mode i.e., pausing after

each instruction is executed. This mode is very useful during program development or program

debugging.

When an interrupt is recognized, TF flag is cleared. When the CPU returns to the main program from

ISS (interrupt service subroutine), by execution of IRET in the last line of ISS, TF flag is restored to

its value that it had before interruption.

TF cannot be directly set or reset. So indirectly it is done by pushing the flag register on the stack,

changing TF as desired and then popping the flag register from the stack.

When IF (interrupt flag) is set, the maskable interrupt INTR is enabled otherwise disabled (i.e.,

when IF = 0).

IF can be set by executing STI instruction and cleared by CLI instruction. Like TF flag, when an

interrupt is recognized, IF flag is cleared, so that INTR is disabled. In the last line of ISS when IRET

is encountered, IF is restored to its original value. When 8086 is reset, IF is cleared, i.e., resetted.

DF (direction flag) is used in string (also known as block move) operations. It can be set by STD

instruction and cleared by CLD. If DF is set to 1 and MOVS instruction is executed, the contents of

the index registers DI and SI are automatically decremented to access the string from the highest

memory location down to the lowest memory location.

ADDRESSING MODES OF 8086:

Addressing modes indicates way of locating data or operands. Depending upon the data types used in

the instruction and the memory addressing modes, any instruction may belong to one or more

addressing modes. Thus the addressing modes describe the types of operands and the way they are

accessed for executing an instruction.

According to the flow of instruction execution, the instruction may be categorized as:
Sequential Control flow instructions Control Transfer instructions

Sequential Control flow instructions: In this type of instruction after execution control can be
transferred to the next immediately appearing instruction in the program.

The addressing modes for sequential control transfer instructions are as follows:

Immediate addressing mode: In this mode, immediate is a part of instruction and appears in the
form of successive byte or bytes.

Example: MOV CX, 0007H; Here 0007 is the immediate data

Direct Addressing mode: In this mode, the instruction operand specifies the memory address where

data is located.

Example: MOV AX, [5000H]; Data is available in 5000H memory location

Effective Address (EA) is computed using 5000H as offset address and content of DS as segment

address.

EA=10H*DS+5000H

Register Addressing mode: In this mode, the data is stored in a register and it is referred using
particular register. All the registers except IP may be used in this mode.

Example: MOV AX, BX;

Register Indirect addressing mode: In this mode, instruction specifies a register containing an

address, where data is located. This addressing mode works with SI, DI, BX and BP registers.

Example: MOV AX, [BX];

EA=10H * DS +[BX]

Indexed Addressing mode: 8-bit or 16-bit instruction operand is added to the contents of an index

register (SI or DI), the resulting value is a pointer to location where data resides. DS and ES are

default segments for index registers SI and DI.

DS=0800H, SI=2000H,

MOV DL, [SI]

Example: MOV AX, [SI];

EA=10H * DS + [SI]

Register Relative Addressing mode: In this mode, the data is available at an effective address

formed by adding an 8-bit or 16-bit displacement with the content of any one of the registers BX, BP,

SI, DI in the default segments.

Example: MOV AX, 50H [BX];

EA=10H * DS + 50H +[BX]

Based Indexed Addressing mode: In this mode, the contents of a base register (BX or BP) is added

to the contents of an index register (SI or DI), the resulting value is a pointer to location where data

resides.

Example: MOV AX, [BX] [SI];

EA=10H * DS + [BX] + [SI]
Relative Based Indexed Addressing mode: In this mode, 8-bit or 16-bit instruction operand is

added to the contents of a base register (BX or BP) and index register (SI or DI), the resulting value

is a pointer to location where data resides.

Example: MOV AX, 50H [BX] [SI];

EA=10H * DS + 50H + [BX] +[SI]

Control Transfer Instructions: In control transfer instruction, the control can be transferred to

some predefined address or the address somehow specified in the instruction after their execution.

For the control transfer instructions, the addressing modes depend upon whether the destination

location is within the segment or different segments. It also depends upon the method of passing the

destination address to the processor. Depending on this control transfer instructions are categorized

as follows:

Intra segment Direct mode: In this mode, the address to which control is to be transferred lies in

the same segment in which control transfer instruction lies and appears directly in the instruction as

an immediate displacement value.

Intra segment Indirect mode: In this mode, the address to which control is to be transferred lies in

the same segment in which control transfer instruction lies but it is passed to the instruction

indirectly.

Inter segment Direct mode: In this mode, the address to which control is to be transferred lies in a

different segment in which control transfer instruction lies and appears directly in the instruction as

an immediate displacement value.

Inter segment Indirect mode: In this mode, the address to which control is to be transferred lies in

a different segment in which control transfer instruction lies but it is passed to the instruction

indirectly.

Memory Segmentation for 8086:

8086, via its 20-bit address bus, can address 220 = 1,048,576 or 1 MB of different memory locations.

Thus the memory space of 8086 can be thought of as consisting of 1,048,576 bytes or 524,288 words. The

memory map of 8086 is shown in Figure where the whole memory space starting from 00000 H to FFFFF

H is divided into 16 blocks each one consisting of 64KB.

1 MB memory of 8086 is partitioned into 16 segments each segment is of 64 KB length. Out of

these 16 segments, only 4 segments can be active at any given instant of time these are code segment,

stack segment, data segment and extra segment. The four memory segments that the CPU works with at

any time are called currently active segments. Corresponding to these four segments, the registers used

are Code Segment Register (CS), Data Segment Register (DS), Stack Segment Register (SS) and Extra

Segment Register (ES) respectively. Each of these four registers is 16-bits wide and user accessible i.e.,

their content scan be changed by software.

The code segment contains the instruction codes of a program, while data, variables and constants

are held in data segment. The stack segment is used to store interrupt and subroutine return addresses. The

extra segment contains the destination of data for certain string instructions. Thus 64 KB are available for

program storage (in CS) as well as for stack (in SS) while128 KB of space can be utilized for data storage

(in DS and ES).One restriction on the base address (starting address) of a segment is that it must reside on

a 16-byte address memory examples being 00000 H, 00010 H or 00020 H, etc.

Memory segmentation, as implemented for 8086, gives rise to the following advantages:

Although the address bus is 20-bits in width, memory segmentation allows one to work with
registers having width 16-bits only.

It allows instruction code, data, stack and portion of program to be more than 64 KB long by using
more than one code, data, extra segment and stack segment.

In a time-shared multitasking environment when the program moves over from one

program to another, the CPU will simply have to reload the four segment registers with the

Because the logical address range is from 0000 H to FFFF H, the same can be loaded at any place
in the memory.

Instruction Set of 8086:

There are 117 basic instructions in the instruction set of 8086.The instruction set of 8086 can be

divided into the following number of groups, namely:

1. Data copy / Transfer instructions 2. Arithmetic and Logical instructions

3. Branch instructions 4. Loop instructions

5. Machine control instructions 6. Flag Manipulation instructions

7. Shift and Rotate instructions 8. String instructions

Data copy / Transfer instructions: The data movement instructions copy values from one location to

another. These instructions include MOV, XCHG, LDS, LEA, LES, PUSH, PUSHF, PUSHFD,

POP,POPF, LAHF, AND SAHF.

MOV The MOV instruction copies a word or a byte of data from source to a destination. The destination
can be a register or a memory location. The source can be a register, or memory location or

immediate data. MOV instruction does not affect any flags. The mov instruction takes several different
forms:

The MOV instruction cannot:

1. Set the value of the CS and IP registers.

2. Copy value of one segment register to another segment register (should copy to general register
first). MOV CS, DS (Invalid)

3. Copy immediate value to segment register (should copy to general register first). MOV CS, 2000H

(Invalid)

Example:

ORG 100h

MOV AX, 0B800h ; set AX = B800h

MOV DS, AX ; copy value of AX to DS.

MOV CL, 'A' ; CL = 41h (ASCII code).

The XCHG Instruction: Exchange This instruction exchanges the contents of the specified source and

destination operands, which may be registers or one of them, may be a memory location. However,

exchange of data contents of two memory locations is not permitted.

Example: MOV AL, 5 ; AL = 5

MOV BL, 2 ; BL = 2

XCHG AL,BL ; AL = 2, BL = 5

PUSH: Push to stack; this instruction pushes the contents of the specified register/memory location on to

the stack. The stack pointer is decremented by 2, after each execution of the instruction. The actual

current stack-top is always occupied by the previously pushed data. Hence, the push operation decrements

SP by two and then stores the two byte contents of the operand onto the stack. The higher byte is pushed

first and then the lower byte. Thus out of the two decremented stack addresses the higher byte occupies

the higher address and the lower byte occupies the lower address.

1. PUSH AX

2. PUSH DS

3. PUSH [500OH] ; Content of location 5000H and 5001 H in DS are pushed onto the stack.

POP: Pop from Stack this instruction when executed loads the specified register/memory location with
the contents of the memory location of which the address is formed using the current stack

segment and stack pointer as usual. The stack pointer is incremented by 2. The POP instruction serves
exactly opposite to the PUSH instruction.

1. POP BX

2. POP DS

3. POP [5000H]

PUSHF: Push Flags to Stack The push flag instruction pushes the flag register on to the stack; first the

upper byte and then the lower byte will be pushed on to the stack. The SP is decremented by 2, for each

push operation. The general operation of this instruction is similar to the PUSH operation.

POPF: Pop Flags from Stack The pop flags instruction loads the flag register completely (both bytes)

from the word contents of the memory location currently addressed by SP and SS. The SP is incremented

by 2for each pop operation.

LAHF: Load AH from Lower Byte of Flag This instruction loads the AH register with the lower byte of

the flag register. This instruction may be used to observe the status of all the condition code flags (except

overflow) at a time.

SAHF: Store AH to Lower Byte of Flag Register This instruction sets or resets the condition code flags

(except overflow) in the lower byte of the flag register depending upon the corresponding bit positions in

AH. If a bit in AH is 1, the flag corresponding to the bit position is set, else it is reset.

LEA: Load Effective Address The load effective address instruction loads the offset of an operand in the

specified register. This instruction is similar to MOV, MOV is faster than LEA.

LEA cx, [bx+si] ; CX (BX+SI) mod 64K If bx=2f00 H; si=10d0H cx 3fd0H

The LDS AND LES instructions:

LDS and LES load a 16-bit register with offset address retrieved from a memory location then load

either DS or ES with a segment address retrieved from memory.

This instruction transfers the 32-bit number, addressed by DI in the data segment, into the BX and DS
registers.

LDS and LES instructions obtain a new far address from memory.

offset address appears first, followed by the segment address

This format is used for storing all 32-bit memory addresses.

A far address can be stored in memory by the assembler.

LDS BX,DWORD PTR[SI]

BL [SI];

BH [SI+1]

DS [SI+3:SI+2]; in the data segment

LES BX,DWORD PTR[SI]

BL [SI];

BH [SI+1]

ES [SI+3:SI+2]; in the extra segment

I/O Instructions: The 80x86 supports two I/O instructions: in and out15. They take the forms: In
ax, port

in ax, dx

out port, ax

out dx, ax

port is a value between 0 and 255.

The in instruction reads the data at the specified I/O port and copies it into the accumulator. The

out instruction writes the value in the accumulator to the specified I/O port.

Arithmetic instructions: These instructions usually perform the arithmetic operations, like addition, subtraction,
multiplication and division along with the respective ASCII and decimal adjust instructions. The increment and
decrement operations also belong to this type of instructions.

The ADD and ADC instructions: The add instruction adds the contents of the source operand to the

destination operand. For example, add ax, bx adds bx to ax leaving the sum in the ax register. Add

computes dest :=dest+source while adc computes dest :=dest+source+C where C represents the

value in the carry flag. Therefore, if the carry flag is clear before execution, adc behaves exactly like the

add instruction.

Example: CF=1

AX=98

Both instructions affect the flags identically. They set the flags as follows:

The overflow flag denotes a signed arithmetic overflow.

The carry flag denotes an unsigned arithmetic overflow.

The sign flag denotes a negative result (i.e., the H.O. bit of the result is one).

The zero flag is set if the result of the addition is zero.

The auxiliary carry flag contains one if a BCD overflow out of the L.O. nibble occurs.

The parity flag is set or cleared depending on the parity of the L.O. eight bits of the result. If there is

even number of one bits in the result, the ADD instructions will set the parity flag to one (to denote even

parity). If there is an odd number of one bits in the result, the ADD instructions clear the parity flag (to

denote odd parity).

The INC instruction: The increment instruction adds one to its operand. Except for carry flag, inc sets

the flags the same way as Add ax, 1 same as inc ax. The inc operand may be an eight bit, sixteen bit. The

inc instruction is more compact and often faster than the comparable add reg, 1 or add mem, 1 instruction.

The AAA and DAA Instructions

The aaa (ASCII adjust after addition) and daa (decimal adjust for addition) instructions support

BCD arithmetic. BCD values are decimal integer coded in binary form with one decimal digit(0..9) per

nibble. ASCII (numeric) values contain a single decimal digit per byte, the H.O. nibble of the byte should

The aaa and daa instructions modify the result of a binary addition to correct it for ASCII

or decimal arithmetic. For example, to add two BCD values, you would add them as though they were

binary numbers and then execute the daa instruction afterwards to correct the results.

Note: These two instructions assume that the add operands were proper decimal or ASCII values. If you

add binary(non-decimal or non-ASCII) values together and try to adjust them with these instructions, you

will not produce correct results.

Aaa (which you generally execute after an add, adc, or xadd instruction) checks the

value in al for BCD overflow. It works according to the following basic algorithm:

if ((al and 0Fh) > 9 or (AuxC =1)) then al := al + 6

else

ax := ax +6 endif

ah := ah + 1

AuxC := 1 ;Set auxilliary carry Carry := 1 ; and carry flags. Else

AuxC := 0 ;Clear auxilliary carry Carry := 0 ; and carry flags.

DX=78 CX=94

BX=9E AX=2C

add al=08 +06; al=0E >9 al=0E+06=04

ah=00+01=01

al=04+03=08, now al<9,
so only clear ah=0

endif

al := al and 0Fh

The aaa instruction is mainly useful for adding strings of digits where there is exactly one decimal digit
per byte in a string of numbers.

The daa instruction functions like aaa except it handles packed BCD values rather than the one

digit per byte unpacked values aaa handles. As for aaa, urpose is to add strings of BCD digits

(with two digits per byte). The algorithm for daa is

if ((AL and 0Fh) > 9 or (AuxC = 1)) then al=24+77=9B, as B>9 add 6 to al

al := al + 6 al=9B+06=A1, as higher nibble A>9, add 60

AuxC := 1 ;Set Auxilliary carry. to al, al=A1+60=101

Endif Note: if higher or lower nibble of AL <9 then

if ((al > 9Fh) or (Carry = 1)) then no need to add 6 to AL

al := al + 60h

Carry := 1; ;Set carry flag.

Endif

EXAMPLE:

Assume AL = 0 0 1 1 0 1 0 1, ASCII

5 BL = 0 0 1 1 1 0 0 1, ASCII 9

ADDAL,BL Result: AL= 0 1 1 0 1 1 1 0 = 6EH,which is incorrect

BCD AAA Now AL = 00000100, unpacked BCD 4.

CF = 1 indicates answer is 14 decimal

NOTE: OR AL with 30H to get 34H, the ASCII code for 4. The AAA instruction works only on the AL

register. The AAA instruction updates AF and CF, but OF, PF, SF, and ZF are left undefined.

EXAMPLES:

AL = 0101 1001 = 59 BCD ; BL = 0011 0101 = 35

BCD ADD AL, BL AL = 1000 1110 = 8EH

DAA Add 01 10 because 1110 > 9 AL = 1001 0100 = 94
BCD AL = 1000 1000 = 88 BCD BL = 0100 1001 = 49 BCD

ADD AL, BL AL = 1101 0001, AF=1

DAA Add 0110 because AF =1, AL = 11101 0111 =
D7H 1101 > 9 so add 0110 0000

AL = 0011 0111= 37 BCD, CF =1

The DAA instruction updates AF, CF, PF, and ZF. OF is undefined after a DAA instruction.

The SUBTRACTION instructions: SUB, SBB, DEC, AAS, and DAS

The sub instruction computes the value dest :=dest - src. The sbb instruction computes dest :=dest

src - C.

The sub, sbb, and dec instructions affect the flags as follows:

They set the zero flag if the result is zero. This occurs only if the operands are equal for sub and sbb.

The dec instruction sets the zero flag only when it decrements the value one.

These instructions set the sign flag if the result is negative.

These instructions set the overflow flag if signed overflow/underflow occurs.

They set the auxiliary carry flag as necessary for BCD/ASCII arithmetic.

They set the parity flag according to the number of one bits appearing in the result value.

The sub and sbb instructions set the carry flag if an unsigned overflow occurs. Note that the dec

instruction does not affect the carry flag.

The aas instruction, like its aaa counterpart, lets you operate on strings of ASCII numbers with one
decimal digit (in the range 0..9) per byte. This instruction uses the following algorithm:

if ((al and 0Fh) > 9 or AuxC = 1)
then al := al - 6

ah := ah - 1

AuxC := 1 ;Set auxilliary

carry Carry := 1 ; and carry

flags. else

AuxC := 0 ;Clear Auxilliary

carry Carry := 0 ; and carry flags.

endif

al := al and 0Fh

The das instruction handles the same operation for BCD values, it uses the
following algorithm:

if ((al and 0Fh) > 9 or (AuxC = 1))

then al := al -6

AuxC =
1 endif

if (al > 9Fh or Carry = 1)
then al := al - 60h

Carry := 1 ;Set the Carry

flag. Endif

EXAMPLE:

ASCII 9-ASCII 5 (9-5)

AL = 00111001 = 39H = ASCII 9

BL = 001 10101 = 35H = ASCII 5

SUB AL, BL Result: AL = 00000100 = BCD 04 and CF =

0 AAS Result: AL = 00000100 = BCD 04 and CF = 0

no borrow required

ASCII 5-ASCII 9 (5-9)

Assume AL = 00110101 = 35H ASCII

5 and BL = 0011 1001 = 39H = ASCII 9

SUB AL, BL Result: AL = 11111100 = - 4 in 2s complement and CF

=1 AAS Result: AL = 00000100 = BCD 04 and CF = 1, borrow needed

EXAMPLES:

AL 1000 0110 86 BCD ; BH 0101 0111 57 BCD

SUB AL,BH AL 0010 1111 2FH, CF = 0

DAS Lower nibble of result is 1111, so DAS automatically

subtracts 0000 0110 to give AL = 00101001 29 BCD

AL 0100 1001 49 BCD BH 0111 0010 72 BCD SUB

AL,BH AL 1101 0111 D7H, CF = 1

DAS Subtracts 0110 0000 (- 60H) because 1101 in upper nibble > 9

AL = 01110111= 77 BCD, CF=1 CF=1 means borrow was needed

The CMP Instruction: The cmp (compare) instruction is identical to the sub instruction with one

crucial difference it does not store the difference back into the destination operand. The syntax for the

cmp instruction is very similar to sub, the generic form is cmpdest, src

Consider the following cmp instruction: cmp ax, bx

This instruction performs the computation ax-bx and sets the flags depending upon the result of the
computation. The flags are set as follows:

Z: The zero flag is set if and only if ax = bx. This is the only time ax-bx produces a zero result. Hence,

you can use the zero flag to test for equality or inequality.

S: The sign flag is set to one if the result is negative.

O: The overflow flag is set after a cmp operation if the difference of ax and bx produced an overflow or
underflow.

C: The carry flag is set after a cmp operation if subtracting bx from ax requires a borrow. This occurs

only when ax is less than bx where ax and bx are both unsigned values.

The Multiplication Instructions: MUL, IMUL, and AAM: This instruction multiplies an unsigned byte

or word by the contents of AL. The unsigned byte or word may be in any one of the general-purpose

registers or memory locations. The most significant word of the result is stored in DX, while the least

significant word of the result is stored in AX.

The mul instruction, with an eight bit operand, multiplies the al register by the operand and stores the 16

bit result in ax. So

ul operand (Unsigned) MUL BL i.e. AL * BL; Al=25 * BL=04; AX=00 (AH) 64 (AL)

imul operand (Signed) IMUL BL i.e. AL * BL; AL=09 * BL=-

-82

The aam (ASCII Adjust after Multiplication) instruction, adjust an unpacked decimal value after

multiplication. This instruction operates directly

eight bit values in the range 0..9 together and the result is sitting in ax (actually, the result will be sitting in

al since 9*9 is 81,the largest possible value; ah must contain zero). This instruction divides ax by 10 and

leaves the quotient in ah and the remainder in al: mul bl; al=9, bl=9 al*bl=9*9=51H; AX=00(AH)

51(AL); AAM ; first hexadecimal value is converted to decimal value i.e. 51 to 81; al=81D; second

convert packed BCD to unpacked BCD, divide AL content by 10 i.e. 81/10 then AL=01, AH =08; AX =

0801

EXAMPLE:

AL 00000101 unpacked BCD 5

BH 00001001 unpacked BCD 9

MUL BH AL x BH; result in AX

AX = 00000000 00101101 = 002DH

AAM AX = 00000100 00000101 = 0405H, which is unpacked BCD for 45.

If ASCII codes for the result are desired, use next instruction OR AX, 3030H Put 3 in upper nibble of

each byte.

AX = 0011 0100 0011 0101 = 3435H, which is ASCII code for 45

The Division Instructions: DIV, IDIV, and AAD

The 80x86 divide instructions perform a 64/32 division (80386 and later only), a 32/16division or a 16/8
division. These instructions take the form:

Div reg For unsigned division

Div mem

Idiv reg For signed division

Idiv mem

The div instruction computes an unsigned division. If the operand is an eight bit operand ,div divides the

ax register by the operand leaving the quotient in al and the remainder(modulo) in ah. If the operand is a

16 bit quantity, then the div instruction divides the 32 bit quantity in dx ax by the operand leaving the

quotient in ax and the remainder in .

Note: If an overflow occurs (or you attempt a division by zero) then the80x86 executes an INT 0

(interrupt zero).

The aad (ASCII Adjust before Division) instruction is another unpacked decimal operation. It splits apart

unpacked binary coded decimal values before an ASCII division operation. The aad instruction is useful

for other operations. The algorithm that describes this instruction is

al := ah*10 + al AX=0905H; BL=06; AAD; AX=AH*10+AL=09*10+05=95D;

convert decimal to hexadecimal; 95D=5FH; al=5f;

DIV BL; AL/BL=5F/06; AX=05(AH)0F(AL) ah := 0

EXAMPLE:

AX = 0607H unpacked BCD for 67 decimal CH = 09H, now
adjust to binary

AAD Result: AX = 0043 = 43H = 67 decimal

DIV CH Divide AX by unpacked BCD in CH

Quotient: AL = 07 unpacked BCD Remainder:

AH = 04 unpacked BCD Flags undefined after DIV

NOTE: If an attempt is made to divide by 0, the 8086 will do a type 0 interrupt.

CBW-Convert Signed Byte to Signed Word: This instruction copies the sign of a byte in AL to all the

bits in AH. AH is then said to be the sign extension of AL. The CBW operation must be done before a

signed byte in AL can be divided by another signed byte with the IDIV instruction. CBW affects no flags.

EXAMPLE:

AX = 00000000 10011011 155 decimal

CBW Convert signed byte in AL to signed word in AX
Result: AX = 11111111 10011011 155 decimal

CWD-Convert Signed Word to Signed Double word: CWD copies the sign bit of a word in AX to all

the bits of the DX register. In other words it extends the sign of AX into all of DX. The CWD operation

must be done before a signed word in AX can be divided by another signed word with the IDIV

instruction. CWD affects no flags.

EXAMPLE:

DX = 00000000 00000000

AX = 11110000 11000111 3897 decimal

CWD Convert signed word in AX to signed double word in DX:AX

Result DX = 11111111 11111111

AX = 11110000 11000111 3897 decimal

Logical, Shift, Rotate and Bit Instructions: The 80x86 family provides five logical instructions, four

rotate instructions, and three shift instructions. The logical instructions are and, or, xor, test, and not; the

rotates are ror, rol, rcr, and rcl; the shift instructions are shl/sal, shr, and sar.

The Logical Instructions: AND, OR, XOR, and NOT: The 80x86 logical instructions operate on a bit-

by-bit basis. Except not, these instructions affect the flags as follows:

They clear the carry flag.

They clear the overflow flag.

They set the zero flag if the result is zero, they clear it otherwise.

They copy the H.O. bit of the result into the sign flag.

They set the parity flag according to the parity (number of one bits) in the result.

They scramble the auxiliary carry flag.

The not instruction does not affect any flags.

The AND instruction sets the zero flag if the two operands do not have any ones in corresponding bit

positions. AND AX, BX

The OR instruction will only set the zero flag if both operands contain zero. OR AX, BX

The XOR instruction will set the zero flag only if both operands are equal. Notice that the xor

operation will produce a zero result if and only if the two operands are equal. Many programmers

commonly use this fact to clear a sixteen bit register to zero since an instruction of the form

xor reg16, reg16; XOR AX, AX is shorter than the comparable mov reg,0 instruction.

You can use the and instruction to set selected bits to zero in the destination operand. This is known as

masking out data; Likewise, you can use the or instruction to force certain bits to one in the destination

operand;

The Shift Instructions: SHL/SAL, SHR, SAR: The 80x86 supports three different shift instructions (shl

and sal are the same instruction):shl (shift left), sal (shift arithmetic left), shr (shift right), and sar (shift

arithmetic right).

SHL/SAL: These instructions move each bit in the destination operand one bit position to the left the

number of times specified by the count operand. Zeros fill vacated positions at the L.O. bit; the H.O.

bit shifts into the carry flag.

The shl/sal instruction sets the condition code bits as follows:

The carry flag contains the last bit shifted out of the H.O. bit of the operand.

The overflow flag will contain one if the two H.O. bits were different prior to a single bit shift. The
overflow flag is undefined if the shift count is not one.

The zero flag will be one if the shift produces a zero result.

The sign flag will contain the H.O. bit of the result.

The parity flag will contain one if there are an even number of one bits in the L.O. byte of the result.

The A flag is always undefined after the shl/sal instruction.

The shift left instruction is especially useful for packing data. For example, suppose

you have two nibbles in al and ah that you want to combine. You could use the

following code to do this:

shl ah, 4 ;

or al, ah ;Merge in H.O. four bits.

Of course, al must contain a value in the range 0..F for this code to work properly (the
shift left operation automatically clears the L.O. four bits of ah before the or instruction).

SHL OPERATION

H.O. four bits of al are not zero before this operation, you can easily clear them with an

and instruction:

shl ah, 4 ;Move L.O. bits to H.O. position.

and al, 0Fh ;Clear H.O. four bits.

or al, ah ;Merge the bits.

Since shifting an integer value to the left one position is equivalent to multiplying that

value by two, you can also use the shift left instruction for multiplication by powers

of two:

shl ax, 1 ;Equivalent to AX*2

shl ax, 2 ;Equivalent to AX*4

shl ax, 3 ;Equivalent to AX*8

SAR: The sar instruction shifts all the bits in the destination operand to the right one

bit, replicating the H.O. bit.

two. Each shift to the right divides the value by two. Multiple right shifts divide the
previous shifted result by two, so multiple shifts produce the following results:

sar ax, 1 ;Signed division by 2 sar

ax, 2 ;Signed division by 4 sar ax,

3 ;Signed division by 8 sar ax, 4

;Signed division by 16 sar ax, 5

;Signed division by 32 sar ax, 6

;Signed division by 64 sar ax, 7

;Signed division by 128 sar ax, 8

;Signed division by 256

SAR OPERATION

There is a very important difference between the sar and idiv instructions. The idiv instruction always

truncates towards zero while sar truncates results toward the smaller result. For positive results, an

arithmetic shift right by one position produces the same result as an integer division by two. However, if

the quotient is negative, idiv truncates towards zero while sar truncates towards negative infinity.

SHR: The shr instruction shifts all the bits in the destination operand to the right one bit shifting a zero

into the H.O. bit

SHR OPERATION

The shift right instruction is especially useful for unpacking data. shifting an unsigned integer value to the

right one position is equivalent to dividing that value by two, you can also use the shift right instruction

for division by powers of two:

shr ax, 1 ;Equivalent to AX/2

shr ax, 2 ;Equivalent to AX/4

shr ax, 3 ;Equivalent to AX/8

shr ax, 4 ;Equivalent to AX/16

The Rotate Instructions: RCL, RCR, ROL, and ROR

The rotate instructions shift the bits around, just like the shift instructions, except the bits shifted out of

the operand by the rotate instructions re-circulate through the operand. They include rcl(rotate through

carry left), rcr(rotate through carry right), rol(rotate left), and ror(rotate right). These instructions all take

the forms :rcldest, count roldest, count rcr dest, count ror dest, count

RCL: The rcl(rotate through carry left), as its name implies, rotates bits to the left, through the carry

flag, and back into bit zero on the right. The rcl instruction sets the flag bits as follows:

The carry flag contains the last bit shifted out of the H.O. bit of the operand.

If the shift count is one, rcl sets the overflow flag if the sign changes as a result of the rotate. If the count

is not one, the overflow flag is undefined.

The rcl instruction does not modify the zero, sign, parity, or auxiliary carry flags.

instruction moves a sequence of bytes from one memory location to another. The cmps instruction

compares two blocks of memory. The scas instruction scansa block of memory for a particular value.

These string instructions often require three operands, a destination block address, a source block address,

and (optionally) an element count. For example, when using the movs instruction to copy a string, you

need a source address, a destination address, and a count (the number of string elements to move).The

operands for the string instructions include:

CX (count) register,

The REP/REPE/REPZ and REPNZ/REPNE Prefixes: The repeat prefixes tell the 80x86 to do a multi-

byte string operation. The syntax for the repeat prefix is:

Field:

Label repeat mnemonic operand ; comment

For MOVS:

Rep movs {operands}

For CMPS:

Repe cmps
{operands}

{operands}

For SCAS:

Repz cmps
{operands} Repne cmps {operands} Repnz cmps

Repe scas {operands} Repz scas {operands} Repne scas {operands} repnz scas {operands}

For STOS:

epstos {operands}

When specifying the repeat prefix before a string instruction, the string instruction repeats cx

times. Without the repeat prefix, the instruction operates only on a single byte,word, or double word.

If the direction flag is clear, the CPU increments si and di after operating upon eachstring element.

If the direction flag is set, then the 80x86 decrements si and di after processing eachstring element. The

direction flag may be set or cleared using the cld (clear direction flag) and std (setdirection flag)

instructions.

The MOVS Instruction: The movsb (move string, bytes) instruction fetches the byte at address ds:si,

stores it at address es:di, and then increments or decrements the si and di registers by one. If the rep prefix

is present, the CPU checks cx to see if it contains zero. If not, then it moves the byte from ds:si to es:di

and decrements the cx register. This process repeats until cx becomes zero. The syntax is :

{REP} MOVSB {REP} MOVSW

The CMPS Instruction: The cmps instruction compares two strings. The CPU compares the string

referenced by es:di to the string pointed at by ds:si. Cx contains the length of the two strings (whenusing

the rep prefix). The syntax is: {REPE} CMPSB {REPE} CMPSW

To compare two strings to see if they are equal or not equal, you must compare corresponding

Therepe prefix accomplishes

this operation. It will compare successive elements in a string as long as they are equal and cx is greater

than zero.

The SCAS Instruction: The scas instruction, by itself, compares the value in the accumulator (al or ax)

against the value pointed at by es:di and then increments (or decrements) di by one or two. The CPU sets

the flags according to the result of the comparison. When using the repne prefix (repeat while not equal),

scas scans the string searching for the first string element which is equal to the value in the accumulator.

The scas instruction takes the following forms:{REPNE} SCASB {REPNE} SCASW The STOS

Instruction: The stos instruction stores the value in the accumulator at the location specified byes:di.

After storing the value, the CPU increments or decrements di depending upon the state of the direction

flag. Its primary use is to initialize arrays and strings to a constant value. {REP} STOSB

{REP} STOSW

The LODS Instruction: The lods instruction copies the byte or word pointed at by ds:si into the al or ax
register, after which it increments or decrements the si register by one or two.{REP} LODSB

{REP} LODSW

Flag Manipulation and Processor Control Instructions: These instructions control the functioning of

the available hardware inside the processor chip. These are categorized into two types; (a) flag

manipulation instructions and (b) machine control instructions.

The flag manipulation instructions directly modify some of the flags of 8086. The machine control

instructions control the bus usage and execution. The flag manipulation instructions and their functions

are as follows:

CLC - Clear carry flag CMC - Complement carry flag STC - Set carry flag

CLD - Clear direction flag STD - Set direction flag CLI - Clear interrupt flag

STI - Set interrupt flag

These instructions modify the carry(CF), direction(DF) and interrupt(IF) flags directly. The DF and IF,

which may be modified using the flag manipulation instructions, further control the processor operation;

like interrupt responses and auto-increment or auto-decrement modes.

The machine control instructions supported by 8086 and 8088 are listed as follows along with

their functions. These machine control instructions do not require any operand.

WAIT - Wait for Test input pin to go low HLT - Halt the processor NOP No

Operation ESC - Escape to external device like NDP (numeric co-processor) LOCK Bu

lock instruction prefix.

After executing the HLT instruction, the processor enters the halt state. The two ways to pull it out of the

halt state are to reset the processor or to interrupt it.

When NOP instruction is executed, the processor does not perform any operation till 4 clock

cycles, except incrementing the IP by one. It then continues with further execution after 4 clock cycles.

ESC instruction when executed, frees the bus for an external master like a coprocessor or

peripheral devices.

The LOCK prefix may appear with another instruction. When it is executed, the bus access is not

allowed for another master till the lock prefixed instruction is executed completely. This instruction is

used in case of programming for multiprocessor systems.

The WAIT instruction when executed holds the operation of processor with the current status till

the logic level on the TEST pin goes low. The processor goes on inserting WAIT states in the instruction

cycle, till the TEST pin goes low. Once the TEST pin goes low, it continues further execution.

Program Flow Control Instructions: The control transfer instructions are used to transfer the control

from one memory location to another memory location. In 8086 program control instructions belong to

three groups: unconditional transfers, conditional transfers, and subroutine call and return instructions.

Unconditional Jumps: The jmp (jump) instruction unconditionally transfers control to another point in

the program. Intra segment jumps are always between statements in the same code segment. Intersegment

jumps can transfer control to a statement in a different code segment.

JMP Address

Unconditional jump Conditional jump

Conditional Jump: The conditional jump instructions are the basic tool for creating loops and other

conditionally The conditional jumps test one or

more bits in the status register to see if they match some particular pattern. If the pattern matches,

control transfers to the target location. If the condition fails, the CPU ignores the conditional jump and

execution continues with the next instruction. Some instructions, for example, test the conditions of the

sign, carry, overflow and zero flags.

Loop Instruction:

These instructions are used to repeat a set of instructions several times.

Format: LOOP Short-Label

Operation: (CX) (CX)-1

instruction.

Instruction LOOP works with respect to contents of CX. CX must be preloaded with a count that

represents the number of times the loop is to be repeat.

Whenever the loop is executed, contents at CX are first decremented then checked to determine if

they are equal to zero.

If CX=0, loop is complete and the instruction following loop is executed.

LOOP AGAIN is almost same as: DEC CX, JNZ AGAIN

SUBROUTINE & SUBROUTINE HANDILING INSTRUCTIONS: CALL, RET

A subroutine is a special segment of program that can be called for execution from any point in a program.

Whenever we need the subroutine, a single instruction is inserted in to the main body of the program to call
subroutine.

Transfers the flow of the program to the procedure.

CALL instruction differs from the jump instruction because a CALL saves a return address on the

stack.

The return address returns control to the instruction that immediately follows the CALL in a program when
a RET instruction executes.

To branch a subroutine the value in the IP or CS and IP must be modified.

After execution, we want to return the control to the instruction that immediately follows the one called the
subroutine i.e., the original value of IP or CS and IP must be preserved.

Execution of the instruction causes the contents of IP to be saved on the stack. (this time (SP) (SP) -2)

A new 16-bit (near-proc, mem16, reg16 i.e., Intra Segment) value which is specified by the instructions
operand is loaded into IP.

Examples: CALL 1234H

CALL BX

CALL [BX]

Return Instruction: RET instruction removes an address from the stack so the program returns to the

instruction following the CALL

Every subroutine must end by executing an instruction that returns control to the main program.

This is the return (RET) instruction.

By execution the value of IP or IP and CS that were saved in the stack to be returned back to their

corresponding registers. (this time (SP) (SP)+2)

MACROS: The macro directive allows the programmer to write a named block of source statements,

then use that name in the source file to represent the group of statements. During the assembly phase, the

assembler automatically replaces each occurrence of the macro name with the statements in the macro

definition.

Macros are expanded on every occurrence of the macro name, so they can increase the length of

the executable file if used repeatable. Procedures or subroutines take up less space, but the increased

overhead of saving and restoring addresses and parameters can make them slower. In summary, the

advantages and disadvantages of macros are,

Advantages

Repeated small groups of instructions replaced by one macro

Errors in macros are fixed only once, in the definition

Duplication of effort is reduced

In effect, new higher level instructions can be created

Programming is made easier, less error prone

Generally quicker in execution than subroutines

Disadvantages

In large programs, produce greater code size than procedures

When to use Macros

To replace small groups of instructions not worthy of subroutines

To create a higher instruction set for specific applications

To create compatibility with other computers

To replace code portions which are repeated often throughout the program

 BHE

 BHE

 RD

RD

IO

IO

IO

IO

FFFFF 1

EPROM

FE000 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

FDFFF 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

SRAM

FC000 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Input

C

B

A
Data transfer Memory chips selection

0 0 0 Word transfer through D15-D0 Both even & odd banks in SRAM

0 0 1 Lower byte transfer through D7-D0 Even bank in SRAM

0 1 0 Higher byte through D15-D8 Odd bank in SRAM

1 0 0 Word transfer through D15-D0 Both even & odd banks in EPROM

1 0 1 Lower byte transfer through D7-D0 Even bank in EPROM

1 1 0 Higher byte through D15-D8 Odd bank in EPROM

 BHE

 BHE

 RD

RD

IO

IO

IO

IO

FFFFF 1

EPROM

FE000 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

FDFFF 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

SRAM

FC000 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Input

C

B

A
Data transfer Memory chips selection

0 0 0 Word transfer through D15-D0 Both even & odd banks in SRAM

0 0 1 Lower byte transfer through D7-D0 Even bank in SRAM

0 1 0 Higher byte through D15-D8 Odd bank in SRAM

1 0 0 Word transfer through D15-D0 Both even & odd banks in EPROM

1 0 1 Lower byte transfer through D7-D0 Even bank in EPROM

1 1 0 Higher byte through D15-D8 Odd bank in EPROM

NIT -III

8051 MICRO CONTROLLER PROGRAMMING AND APPLICATIONS

3.1 Introduction to micro controllers,

Introduction to Microcontrollers:

8051 is one of the first most popular microcontroller also known as MCS-51. It was introduced by
Intel in the year 1981. Initially it came out as N-type metal-oxide-semiconductor (NMOS) based

microcontroller, but later versions were based on complementary metal-oxide-semiconductor(CMOS)

technology. These microcontrollers were named as 80C51, where C in the name tells that it is based

on CMOS technology.

It is an 8-bit microcontroller which means data bus is of 8-bits. Therefore, it can process 8-bits at a

time. It is used in wide variety of embedded systems like robotics, remote controls, automotive

industry, telecom applications, power tools etc

3. 2 Functional block diagram,.

The necessary tools for a microprocessor/controller:

• CPU: Central Processing Unit

• I/O: Input /Output

• Bus: Address bus & Data bus

• Memory: RAM & ROM

• Timer

• Interrupt

• Serial Port

• Parallel Port

•

Microprocessors:

General-purpose microprocessor :

• CPU for Computers
• No RAM, ROM, I/O on CPU chip itself

• Example：Intel’s x86, Motorola’s 680x0

Microcontroller :

• A smaller computer
• On-chip RAM, ROM, I/O ports...

• Example：Motorola’s 6811, Intel’s 8051, Zilog’s Z8 and PIC 16X

•

Microprocessor vs. Microcontroller :

Figure 3.1 Internal Block diagram of mc 8051

8051 Microcontroller Hardware:

The 8051 microcontroller actually includes a whole family of microcontrollers

that have numbers ranging from 8031 to 8751 and are available in N-Channel

Metal Oxide Silicon (NMOS) and Complementary Metal Oxide Silicon (CMOS)

construction in a variety of housed in a 40-pin DIP, and direct the investigation of

a particular type to thedata books.

The block diagram of the 8051 in Figure 2. la shows all of the features unique to

microcontrollers:

1. Internal ROM and RAM

2. I/O ports with programmable pins

3. Timers and counters

4. Serial data communication

The figure also shows the usual CPU components: program counter, ALU,working

registers, and clock circuits.'

The 8051 architecture consists of these specific features:

Eight-bit CPU with registers A (the accumulator) and B

Sixteen-bit program counter (PC) and data pointer (DPTR)

Eight-bit program status word (PSW)

Eight-bit stack pointer (SP)

Internal ROM or EPROM (8751) of 0 (8031) to 4K (8051)

Internal RAM of 128 bytes:

Four register banks, each containing eight registers

Sixteen bytes, which may be addressed at the bit level

Eighty bytes of general-purpose data memory

Thirty-two input/output pins arranged as four 8-bit ports: PO-P3

Two 16-bit timer/counters: TO and Tl

Full duplex serial data receiver/transmitter: SBUF

Figure 3.2 simplified block diagram of 8051

Control registers: TCON, TMOD, SCON, PCON, IP, and IE

Two external and three internal interrupt sources

Oscillator and clock circuits

Figure 3.3 Programming model of 8051 Micro Controller

The programming model of the 8051 in Figure 2. Ib shows the 8051 as a

collection of 8- and 16-bit registers and 8-bit memory locations. These registers

and memory locations can be made to operate using the software instructions that

are incorporated as part of the design. The program instructions have to do with

the control of the registers and digital data paths that are physically contained

inside the 8051, as well as memory locations that are physically located outside

the 8051.

The model is complicated by the number of special-purpose registers that must be

present to make a microcomputer a microcontroller. A cursory inspection of the

model is recommended for the first-time viewer; return to the model as needed

while progressing through the remainder of the text.

Most of the registers have a specific function; those that do occupy an individual

block with a symbolic name, such as A or THO or PC. Others, which are

generally indistinguishable from each other, are grouped in a larger block, such

as internal ROM or RAM memory.

Each register, with the exception of the program counter, has an internal 1-byte

address assigned to it. Some registers (marked with an asterisk * in Figure 2.1b)

are both byte and bit addressable. That is, the entire byte of data at such register

addresses may be read or altered, or individual bits may be read or altered.

Software instructions are generally able to specify a register by its address, its

symbolic name, or both. A pinout of the 8051 packaged in a 40-pin DIP is shown

in Figure 2.2 with the full and abbreviated names of the signals for each pin. It is

important to note that many of the pins are used for more than one function (the

alternate functions are shown in parentheses in Figure 2.2). Not all of the possible

8051 features may be used at the same time.

Programming instructions or physical pin connections determine the use of any

multifunction pins. For example, port 3 bit 0 (abbreviated P3.0) may be used as a

general purpose I/O pin, or as an input (RXD) to SBUF, the serial data receiver

register. The system designer decides which of these two functions is to be used

and designs the hardware and software affecting that pin accordingly.

Program Counter and Data Pointer

The 8051 contains two 16-bit registers: the program counter (PC) and the data

pointer (DPTR). Each is used to hold the address of a byte in memory.

Program instruction bytes are fetched from locations in memory that are

addressed by the PC. Program ROM may be on the chip at addresses OOOOh to

OFFFh, external to the chip for addresses that exceed OFFFh, or totally external

for all addresses from OOOOh to FFFFh. The PC is automatically incremented

after every instruction byte is fetched and may also be altered by certain

instructions. The PC is the only register that does not have an internal address.

The DPTR register is made up of two 8-bit registers, named DPH and DPL, that

are

used to furnish memory addresses for internal and external code access and

external data access. The DPTR is under the control of program instructions and

can be specified by its 16-bit name, DPTR, or by each individual byte name,

DPH and DPL. DPTR does not have a single internal address; DPH and DPL are

each assigned an address.

A and B CPU Registers

The 8051 contains 34 general-purpose, or working, registers. Two of these,

registers A and B, comprise the mathematical core of the 8051 central processing

unit (CPU). The other 32 are arranged as part of internal RAM in four banks, BO-

B3, of eight registers each, named RO to R7.

The A (accumulator) register is the most versatile of the two CPU registers and is

used for many operations, including addition, subtraction, integer multiplication

and division, and Boolean bit manipulations. The A register is also used for all

data transfers between the 8051 and any external memory. The B register is used

with the A register for multiplication and division operations and has no other

function other than as a location where data may be stored.

Flags and the Program Status Word (PSW):

Flags are I -bit registers provided to store the results of certain program

instructions. Other instructions can test the condition of the flags and make

decisions based upon the flag states. In order that the flags may be conveniently

addressed, they are grouped inside the program status word (PSW) and the power

control (PCON) registers.

The 8051 has four math flags that respond automatically to the outcomes of math

operations and three general-purpose user flags that can be set to I or cleared to 0

by the programmer as desired. The math flags include carry (C), auxiliary carry

(AC), overflow (OV), and parity (P). User flags are named FO, GFO, and GF1;

they are general-purpose flags that may be used by the programmer to record

some event in the program. Note that all of the flags can be set and cleared by the

programmer at will. The math flags, however, are also affected by math

operations.

The program status word is shown in Figure. The PSW contains the math flags,

user program flag FO, and the register select bits that identify which of the four

generalpurpose register banks is currently in use by the program. The remaining

two user flags, GFO and GFl, are stored in PCON,

Detailed descriptions of the math flag operations will be discussed in chapters

that

cover the opcodes that affect the flags. The user flags can be set or cleared using

data move instructions.

2. 3 Instruction sets

8051 has about 111 instructions. These can be grouped into the following categories

Arithmetic Instructions

Logical Instructions

Data Transfer instructions

Boolean Variable Instructions

Program Branching Instructions

The following nomenclatures for register, data, address and variables are

used while writeinstructions

A: Accumulator

B: "B" register

C: Carry bit

Rn: Register R0 - R7 of the currently selected register bank

Direct: 8-bit internal direct address for data. The data could be in lower 128bytes of
RAM (00 - 7FH) or it could be in the special function register (80 - FFH).

@Ri: 8-bit external or internal RAM address available in register R0 or R1. This is
used
for indirect addressing mode.

#data8: Immediate 8-bit data available in the instruction.

#data16: Immediate 16-bit data available in the instruction.

Addr11: 11-bit destination address for short absolute jump. Used by instructions AJMP
& ACALL. Jump range is 2 kbyte (one page).

Addr16: 16-bit destination address for long call or long jump.

Rel: 2's complement 8-bit offset (one - byte) used for short jump (SJMP) and all

conditional jumps.

bit: Directly addressed bit in internal RAM or SFR

Some Simple Instructions:

MOV dest, source; dest = source

MOV A, #72H;A=72H

MOV R4, #62H ; R4=62H

MO B,0F9H; B=the content of F9’th byte of RAM

MOV DPTR, #7634H

MOV DPL,#34H

MOV DPH, #76H

MOV P1, A ; mov A to port 1

Note 1:

MOV A , #72H

After instruction

“MOV A,72H ” the content of 72’th byte of RAM replace in accumulator

MOV A, R3 ≡ MOV A, R3

ADD A, Source ;A=A+SOURCE

ADD A,#6 ;A=A+6

ADD A,R6 ;A=A+R6

ADD A,6

;A=A+[6] or

A=A+R6

ADD A, 0F3H ; A=A+[0F3H]

SUBB A, Source ;A=A-SOURCE-C

SUBB A,#6 ;A=A-6

SUBB A,R6

MUl & Div:

;A=A+R6

MUL AB ; B|A = A*B

MOV A, #25

MOV B, #65H

MUL AB

• DIV AB ;A = A/B,

• B = A mod B

• ;B=0EH, A=99H

MOV A,#25

MOV

DIV

 B,#10

AB ;A=2, B=5

SETB bit ; bit=1

CLR bit ; bit=0

SETB C ; CY=1

SETB P0.0 ;bit 0 from port 0 =1

SETB P3.7 ;bit 7 from port 3 =1

SETB ACC.2 ;bit 2 from ACCUMULATOR

=1

SETB 05 ;set high D5 of RAM loc. 20h

Note:

CLR

instruction is

as same as

SETB i.e.:

CLR C ;CY=0

But following instruction is only for CLR:

 CLR A ;A=0

DEC byte ;byte=byte-1

INC byte ;byte=byte+1

INC R7

DEC A

DEC 40H ; [40]=[40]-1

ANL - ORL – XRL

Bitwise

Logical

Operations:

AND, OR,

XOR

EXAMPLE:

MOV R5,#89H

ANL R5,#08H

CPL A ;1’s complement

Example:

L01: CPL A

MOV A,#55H ;A=01010101 B

MOV P1,A

ACALL DELAY

SJMP L01

3.4 addressing modes

Addressing modes of 8051

In 8051 There are six types of addressing modes.

 Immediate Addressing Mode

 Register Addressing Mode

 Direct Addressing Mode

 Register Indirect Addressing Mode

 Indexed Addressing Mode

 Implied Addressing Mode

Immediate addressing mode

In this Immediate Addressing Mode, the data is provided in the instruction itself. The data is provided

immediately after the opcode. These are some examples of Immediate Addressing Mode

MOV A, #0AFH

MOV R3, #45H

MOV DPTR, #FE00H

In these instructions, the # symbol is used for immediate data. In the last instruction, there is DPTR. The

DPTR stands for Data Pointer. Using this, it points the external data memory location. In the first

instruction, the immediate data is AFH, but one 0 is added at the beginning. So when the data is starting

with A to F, the data should be preceded by 0.

Register addressing mode

In the register addressing mode the source or destination data should be present in a register (R0 to R7).

These are some examples of Register Addressing Mode.

MOV A, R5

MOV R2, #45H

MOV RO, A

In 8051, there is no instruction like MOVR5, R7. But we can get the same result by using this

instruction MOV R5, 07H, or by using MOV 05H, R7. But this two instruction will work when the

selected register bank is RB0. To use another register bank and to get the same effect, we have to add

the starting address of that register bank with the register number. For an example, if the RB2 is

selected, and we want to access R5, then the address will be (10H + 05H = 15H), so the instruction will

look like this MOV 15H, R7. Here 10H is the starting address of Register Bank 2.

Direct Addressing Mode

In the Direct Addressing Mode, the source or destination address is specified by using 8-bit data in the

instruction. Only the internal data memory can be used in this mode. Here some of the examples of

direct Addressing Mode.

MOV 80H, R2

MOV R6, 60H

MOV R0, 05H

The first instruction will send the content of registerR6 to port P0 (Address of Port 0 is 80H). The

second one is forgetting content from 45H to R2. The third one is used to get data from Register R5

(When register bank RB0 is selected) to register R5.

Register indirect addressing Mode

In this mode, the source or destination address is given in the register. By using register indirect

addressing mode, the internal or external addresses can be accessed. The R0 and R1 are used for 8-bit

addresses, and DPTR is used for 16-bit addresses, no other registers can be used for addressing

purposes. Let us see some examples of this mode.

MOV 0E5, @R0

MOV @R6, P0

MOV @R2, 60H

In the instructions, the @ symbol is used for register indirect addressing. In the first instruction, it is

showing that theR0 register is used. If the content of R0 is 40H, then that instruction will take the data

which is located at location 40H of the internal RAM. In the second one, if the content of R6 is 30H,

then it indicates that the content of port P0 will be stored at location 30H in the internal RAM

MOV A, @RI

MOVX @DPTR,, A

In these two instructions, the X in MOVX indicates the external data memory. The external data

memory can only be accessed in register indirect mode. In the first instruction if the R0 is holding 40H,

then A will get the content of external RAM location40H. And in the second one, the content of A is

overwritten in the location pointed by DPTR.

Indexed addressing mode

In the indexed addressing mode, the source memory can only be accessed from program memory only.

The destination operand is always the register A. These are some examples of Indexed addressing mode.

MOVC A, @A+PC

MOVC A, @A+ DPTR

The C in MOVC instruction refers to code byte. For the first instruction, let us consider A holds 30H.

And the PC value is1125H. The contents of program memory location 1155H (30H + 1125H) are moved

to register A

Implied Addressing Mode

In the implied addressing mode, there will be a single operand. These types of instruction can work on

specific registers only. These types of instructions are also known as register specific instruction. Here

are some examples of Implied Addressing Mode.

RLA

SWAP A

These are 1- byte instruction. The first one is used to rotate the A register content to the Left. The second

one is used to swap the nibbles in A.

3.5 interrupt structure

Interrupts:

1. Enabling and Disabling Interrupts

2. Interrupt Priority

3. Writing the ISR (Interrupt Service Routine)

Interrupt Enable (IE) Register :

• EA : Global enable/disable.

• --- : Undefined.

• ET2 :Enable Timer 2 interrupt.

• ES :Enable Serial port interrupt.

• ET1 :Enable Timer 1 interrupt.

• EX1 :Enable External 1 interrupt.

• ET0 : Enable Timer 0 interrupt.

• EX0 : Enable External 0 interrupt.

Interrupt Vectors:

3.6 Timer Peripheral Control RegistersPCON (Power Control)

The PCON or Power Control register, as the name suggests is used to control the

8051 Microcontroller’s Power Modes and is located at 87H of the SFR Memory

Space. Using two bitsin the PCON Register, the microcontroller can be set to Idle

Mode and Power Down Mode.

During Idle Mode, the Microcontroller will stop the Clock Signal to the ALU

(CPU) but it is given to other peripherals like Timer, Serial, Interrupts, etc. In order

to terminate the Idle Mode,you have to use an Interrupt or Hardware Reset.

In the Power Down Mode, the oscillator will be stopped and the power will be

reduced to 2V. Toterminate the Power Down Mode, you have to use the Hardware

Reset.

Apart from these two, the PCON Register can also be used for few additional

purposes. TheSMOD Bit in the PCON Register is used to control the Baud Rate

of the Serial Port.

There are two general purpose Flag Bits in the PCON Register, which can be

used by theprogrammer during execution.

SCON (Serial Control)

The Serial Control or SCON SFR is used to control the 8051 Microcontroller’s

Serial Port. It islocated as an address of 98H. Using SCON, you can control the

Operation Modes of the Serial Port, Baud Rate of the Serial Port and Send or

Receive Data using Serial Port.

SCON Register also consists of bits that are automatically SET when a byte of data

is transmittedor received.

TCON (Timer Control)

Timer Control or TCON Register is used to start or stop the Timers of 8051

Microcontroller. Italso contains bits to indicate if the Timers has overflowed. The

TCON SFR also consists of Interrupt related bits.

TMOD (Timer Mode)

The TMOD or Timer Mode register or SFR is used to set the Operating Modes of

the Timers T0and T1. The lower four bits are used to configure Timer0 and the

higher four bits are used to configure Timer1.

The Gatex bit is used to operate the Timerx with respect to the INTx pin or
regardless of theINTx pin.

GATE1 = 1 ==> Timer1 is operated only if

INT1 is SET. GATE1 = 0 ==> Timer1 is

operates irrespective of INT1 pin.GATE0 = 1

==> Timer0 is operated only if INT0 is SET.

GATE0 = 0 ==> Timer0 is operates

irrespective of INT0 pin.

The C/Tx bit is used selects the source of pulses for the Timer

to count. C/T1 = 1 ==> Timer1 counts pulses from Pin T1

(P3.5) (Counter Mode) C/T1 = 0 ==> Timer1 counts pulses

from internal oscillator Timer Mode)

C/T0 = 1 ==> Timer0 counts pulses from Pin T0 (P3.4)

(Counter Mode) C/T0 = 0 ==> Timer0 counts pulses from

internal oscillator (Timer Mode)

TxM0

0

0

1

1

Description

13-bit Timer Mode (THx – 8-bit and TLx

– 5-bit)

16-bit Timer Mode

8-bit Auto Reload Timer Mode

Two 8-bit Timer Mode or Split

Timer Mode

TxM1 Mode

0

0

1

1

0

2

1

3

IP (Interrupt Priority)

The IP or Interrupt Priority Register is used to set the priority of the interrupt as

High or Low. If a bit is CLEARED, the corresponding interrupt is assigned low

priority and if the bit is SET, theinterrupt is assigned high priority.

Peripheral

Data

Registers

SBUF (Serial

Data Buffer)

The Serial Buffer or SBUF register is used to hold the serial data while

transmission orreception.

3.7 I/O Ports

Internal Memory:

A functioning computer must have memory for program code bytes, commonly

in ROM, and RAM memory for variable data that can be altered as the program

runs. The 8051 has internal RAM and ROM memory for these functions.

Additional memory can be added externally using suitable circuits.

Unlike microcontrollers with Von Neumann architectures, which can use a single

memory address for either program code or data, but not for both, the 8051 has a

Harvard architecture, which uses the same address, in different memories, for

code and data. Internal circuitry accesses the correct memory based upon the

nature of the operation in progress.

Internal RAM:

The 128-byte internal RAM, which is shown generally in Figure 2.1 and in detail

in Figure 2.5, is organized into three distinct areas:

2. Thirty-two bytes from address OOh to I Fh that make up 32 working registers

organized as four banks of eight registers each. The four register banks are

numbered 0 to 3 and are made up of eight registers named RO to R7. Each

register

can be addressed by name (when its bank is selected) or by its RAM address.

Thus RO of bank 3 is RO (if bank 3 is currently selected) or address 18h

(whether

bank 3 is selected or not). Bits RSO and RSI in the PSW determine which bank

of registers is currently in use at any time when the program is running.

Register banks not selected can be used as general-purpose RAM. Bank 0 is

selected upon reset.

3. A Wf-addressable area of 16 bytes occupies RAM byte addresses 20h to 2Fh,

forming a total of 128 addressable bits. An addressable bit may be specified by

its bit address of OOh to 7Fh, or 8 bits may form any byte address from 20h to

2Fh. Thus, for example, bit address 4Fh is also bit 7 of byte address 29h.

Addressable bits are useful when the program need only remember a binary event

(switch on, light off, etc.). Internal RAM is in short supply as it is, so why use a

byte when a bit will do?

4. A general-purpose RAM area above the bit area, from 30h to 7Fh,

addressable as bytes.

Figure Pin diagram of 8051

PortO:

Port 0 pins may serve as inputs, outputs, or, when used together, as a bi-

directional loworder address and data bus for external memory. For example,

when a pin is to be used as an input, a 1 must be written to the corresponding port

0 latch by the program, thus turning both of the output transistors off, which in

turn causes the pin to "float" in a highimpedance state, and the pin is essentially

connected to the input buffer.

When used as an output, the pin latches that are programmed to a 0 will turn on

the

lower FET, grounding the pin. All latches that are programmed to a 1 still float;

thus, external pull up resistors will be needed to supply a logic high when using

port 0 as an output.

When port 0 is used as an address bus to external memory, internal control

signals

switch the address lines to the gates of the Field Effect Transistories (FETs). A

logic I on an address bit will turn the upper FET on and the lower FET off to

provide a logic high at the pin. When the address bit is a zero, the lower FET is

on and the upper FET off to provide a logic low at the pin.

29

30

After the address has been formed and latched into external circuits by the

Address Latch Enable (ALE) pulse, the bus is turned around to become a data

bus. Port 0 now reads data from the external memory and must be configured as

an input, so a logic 1 is automatically written by internal control logic to all port 0

latches.

Port l

Port 1 pins have no dual functions. Therefore, the output latch is connected

directly to the gate of the lower FET, which has an FET circuit labeled "Internal

FET Pull up" as an active pull up load.

Used as an input, a 1 is written to the latch, turning the lower FET off; the

pinand the input to the pin buffer are pulled high by the FET load. An external

circuit can overcome the high impedance pull up and drive the pin low to input a

0 or leave the input high for a 1.

If used as an output, the latches containing a I can drive the input of an external

circuit high through the pull up. If a 0 is written to the latch, the lower FET is on,

the pull up is off, and the pin can drive the input of the external circuit low.

To aid in speeding up switching times when the pin is used as an output, the

internal FET pull up has another FET in parallel with it. The second FET is

turned on for two oscillator time periods during a low-to-high transition on the

pin, as shown in Figure 2.7.

This arrangement provides a low impedance path to the positive voltage supply to

help reduce rise times in charging any parasitic capacitances in the external

circuitry.

Port 2

Port 2 may be used as an input/output port similar in operation to port 1. The

alternate use of port 2 is to supply a high-order address byte in conjunction with

the port 0 low-order byte to address external memory.

Port 2 pins are momentarily changed by the address control signals when

supplying the high byte of a 16-bit address. Port 2 latches remain stable when

31

external memory is addressed, as they do not have to be turned around (set to 1)

for data input as is the case for port 0.

Port3

Port 3 is an input/output port similar to port I. The input and output functions can

be programmed under the control of the P3 latches or under the control of various

other special function registers. The port 3 alternate uses are shown in the

following table:-

Unlike ports 0 and 2, which can have external addressing functions and change

all

eight port bits when in alternate use, each pin of port 3 may be individually

programmed to be used either as I/O or as one of the alternate functions.

External Memory

The system designer is not limited by the amount of internal RAM and ROM

available on chip. Two separate external memory spaces are made available by

the 16-bit PC and DPTR and by different control pins for enabling external ROM

32

and RAM chips. Internal control circuitry accesses the correct physical memory,

depending upon the machine cycle state and the op code being executed.

There are several reasons for adding external memory, particularly program

memory, when applying the 8051 in a system. When the project is in the

prototype stage, the expense—in time and money—of having a masked internal

ROM made for each program "try" is prohibitive.

To alleviate this problem, the manufacturers make available an EPROM version,

the 8751, which has 4K of on-chip EPROM that may be programmed and erased

as needed as the program is developed. The resulting circuit board layout will be

identical to one that uses a factory-programmed 8051. The only drawbacks to the

8751 are the specialized EPROM programmers that must be used to program the

non-standard 40-pin part, and the limit of "only" 4096 bytes of program code.

The 8751 solution works well if the program will fit into 4K bytes.

Unfortunately, many times, particularly if the program is written in a high-level

language, the program size exceeds 4K bytes, and an external program memory is

needed. Again, the manufacturers provide a version for the job, the ROMIess

8031. The EA pin is grounded when using the 8031, and all program code is

contained in an external EPROM that may be as large as 64K bytes and that can

be programmed using standard EPROM programmers.

External RAM, which is accessed by the DPTR, may also be needed when 128

bytes of internal data storage is not sufficient. External RAM, up to 64K bytes,

may also be added to any chip in the 8051 family.

Connecting External Memory

Figure 2.8 shows the connections between an 8031 and an external memory

configuration consisting of I6K bytes of EPROM and 8K bytes of static RAM.

The 8051 accesses external RAM whenever certain program instructions are

executed. External ROM is accessed whenever the EA (external access) pin is

connected to ground or when the PC contains an address higher than the last

address in the internal 4K bytes ROM (OFFFh). 8051 designs can thus use

33

internal and external ROM automatically; the 8031, having no internal ROM,

must have EA grounded.

Figure 2.9 shows the timing associated with an external memory access cycle.

During any memory access cycle, port 0 is time multiplexed. That is, it first

provides the lower byte of the 16-bit memory address, then acts as a bidirectional

data bus to write or read a byte of memory data. Port 2 provides the high byte of

the memory address during the entire memory read/write cycle.

The lower address byte from port 0 must be latched into an external register to

save

the byte. Address byte save is accomplished by the ALE clock pulse that provides

the correct timing for the '373 type data latch. The port 0 pins then become free to

serve as a data bus.

If the memory access is for a byte of program code in the ROM, the PSEN

(program store enable) pin will go low to enable the ROM to place a byte of

program code on the data bus. If the access is for a RAM byte, the WR (write) or

RD (read) pins will go low, enabling data to flow between the RAM and the data

bus.

The ROM may be expanded to 64K by using a 27512 type EPROM and

connecting the remaining port 2 upper address lines AI4-A15 to the chip.

At this time the largest static RAMs available are 32K in size; RAM can be

expanded to 64K by using two 32K RAMs that are connected through address

A14 of port 2. The

34

Figure Interfacing 8086 with external memory

first 32K RAM (OOOOh-7FFFh) can then be enabled when AI5 of port 2 is low,

and the second 32K RAM (SOOOh-FFFFh) when A15 is high, by using an

inverter.

Note that the WR and RD signals are alternate uses for port 3 pins 16 and 17.

Also,

port 0 is used for the lower address byte and data; port 2 is used for upper address

bits. The use of external memory consumes many of the port pins, leaving only

port 1 and parts of port 3 for general I/O.

3.8 serial communication.

35

The 8051 microcontroller is parallel device that transfers eight bits of data

simultaneously over eight data lines to parallel I/O devices. Parallel data transfer

over a long is very expensive. Hence, a serial communication is widely used in

long distance communication. In serial data communication, 8-bit data is

converted to serial bits using a parallel in serial out shift register and then it is

transmitted over a single data line. The data byte is always transmitted with least

significant bit first.

BASICS OF SERIAL DATA COMMUNICATION, Communication Links

1. Simplex communication link: In simplex transmission, the line is dedicated for

transmission. The transmitter sends and the receiver receives the data.

2. Half duplex communication link: In half duplex, the communication link can

be used for either transmission or reception. Data is transmitted in only one

direction at a time. Receiver Transmitter

3. Full duplex communication link: If the data is transmitted in both ways at the

same time, it is a full duplex i.e. transmission and reception can proceed

simultaneously. This communication link requires two wires for data, one for

transmission and one for reception.

Types of Serial communication: Serial data communication uses two types of

communication.

1. Synchronous serial data communication: In this transmitter and receiver are

synchronized. It uses a common clock to synchronize the receiver and the

transmitter. First the synch character is sent and then the data is transmitted. This

format is generally used for high speed transmission. In Synchronous serial data

communication a block of data is transmitted at a time. Receiver Transmitter

Transmitter Start D0 D1 D2 D3 D4 D5 D6 D7 D8 Stop Receiver

2. Asynchronous Serial data transmission: In this, different clock sources are

used for transmitter and receiver. In this mode, data is transmitted with start and

stop bits. A transmission begins with start bit, followed by data and then stop bit.

For error checking purpose parity bit is included just prior to stop bit. In

36

Asynchronous serial data communication a single byte is transmitted at a time.

Data Clock 1 Clock2 Baud rate:

The rate at which the data is transmitted is called baud or transfer rate. The baud

rate is the reciprocal of the time to send one bit. In asynchronous transmission,

baud rate is not equal to number of bits per second. This is because; each byte is

preceded by a start bit and followed by parity and stop bit. For example, in

synchronous transmission, if data is transmitted with 9600 baud, it means that

9600 bits are transmitted in one second. For bit transmission time = 1 second/

9600 = 0.104 ms. Over the years, dozens of serial protocols have been crafted to

meet particular needs of embedded systems.

1. USB (universal serial bus), and Ethernet, are a couple of the well- known

computing serial interfaces.

2. Other very common serial interfaces include SPI, I2C, RS-232 and so on.

3. Each of these serial interfaces can be sorted into one of two groups:

synchronous or asynchronous.

4. A Synchronous serial interface always pairs its data line(s) with a clock signal,

so all devices on a synchronous serial bus share a common clock. This often

allows faster serial transfer, but it also requires at least one extra wire between

communicating devices. Examples of synchronous interfaces include SPI, and

I2C. Asynchronous means that data is transferred without support from an

external clock signal. Minimizes the required wires and I/O pins, but we need to

put some extra effort into reliably transferring and receiving data. 5. The

Universal Asynchronous Receiver/Transmitter (UART) controller is the key

component of the serial communications subsystem. UART is also a common

integrated feature in most microcontrollers. The UART takes bytes of data and

transmits the individual bits in a sequential fashion. At the destination, a second

UART re-assembles the bits into complete bytes. Communication can be “full

duplex” (both send and receive at the same time) or “half duplex” (devices take

turns transmitting and receiving). 6. The Universal Synchronous/Asynchronous

Receiver/Transmitter (USART) controller is another implementation of the serial

port. UART supports only asynchronous mode, whereas USART supports both

37

asynchronous and synchronous modes. Unlike Ethernet, Firewire etc., there is no

specific port for UART/USART. They are commonly used in conjugation with

protocols like RS- 232, RS-434 etc.

SCON (Serial Control)

The Serial Control or SCON SFR is used to control the 8051 Microcontroller’s

Serial Port. It islocated as an address of 98H. Using SCON, you can control the

Operation Modes of the Serial Port, Baud Rate of the Serial Port and Send or

Receive Data using Serial Port.

SCON Register also consists of bits that are automatically SET when a byte of data

is transmittedor received.

38

Rules for UART The asynchronous serial protocol has a number of built-in rules -

mechanisms that help ensure robust and error-free data transfers. These

mechanisms compensate the non-existence of the common clock signal: Baud

Rate: The baud rate specifies how fast data is sent over a serial line. It’s usually

expressed in units of bits-per-second (bps). This value determines how long the

transmitter holds a serial line high/low or at what period the receiving device

samples it’s line. Baud rates can be just about any value within reason. The only

requirement is that both devices operate at the same rate. Common baud rate is

9600 bps. Other “standard” baud are 1200, 2400, 4800, 19200, 38400, 57600,

and 115200. Framing the data Each block (usually a byte) of data transmitted is

actually sent in a packet or frame of bits. Frames are created by appending

synchronization and parity bits to our data. Some symbols in the frame have

configurable bit sizes. Data chunk :The amount of data in each packet can be set

to anything from 5 to 9 bits. Certainly, the standard data size is your basic 8-bit

byte, but other sizes have their uses. A 7-bit data chunk can be more efficient than

8, especially if you’re just transferring 7-bit ASCII characters. After agreeing on

a character-length, both serial devices also have to agree on the endianness of

their data. Is data sent mostsignificant bit (msb) to least, or vice-versa? If it’s not

otherwise stated, you can usually assume that data is transferred least-significant

bit (lsb) first. Synchronization bits: The synchronization bits are two or three

special bits transferred with each chunk of data. They are the start bit and the

stop bit(s), and mark the beginning and end of a packet. There is always only one

start bit, but the number of stop bits is configurable to either one or two (though

it’s commonly left at one). The start bit is always indicated by an idle data line

going from 1 to 0, while the stop bit(s) will transition back to the idle state by

holding the line at 1. Parity bits: Parity is optional, and not very widely used. It

can be helpful for transmitting across noisy mediums, but it’ll also slow down

data transfer a bit and requires both sender and receiver to implement error-

handling (usually, received data that fails must be re-sent). A variety of

communication protocols have been developed based on serial communication in

the past few decades. Some of them are: SPI – Serial Peripheral Interface: It is a

39

three-wire based communication system. One wire each for Master to slave and

Vice-versa, and one for clock pulses. There is an additional SS (Slave Select)

line, which is mostly used when we want to send/receive data between multiple

ICs. I2C – Inter-Integrated Circuit : Pronounced eye-two-see or eye-square-see,

this is an advanced form of USART. The transmission speeds can be as high as

400KHz. The I2C bus has two wires – one for clock, and the other is the data

line, which is bi-directional – this being the reason it is also sometimes (not

always – there are a few conditions) called Two Wire Interface (TWI). It is a new

and revolutionary technology invented by Philips. FireWire – Developed by

Apple. High-speed buses capable of audio/video transmission. The bus contains

a number of wires depending upon the port, which can be either a 4-pin one, or a

6-pin one, or an 8-pin one. Ethernet : Used mostly in LAN connections, the bus

consists of 8 lines, or 4 Tx/Rx pairs. Universal serial bus (USB). Most popular

of all serial interfaces. Is used for virtually all type of connections. The bus has 4

lines: VCC, Ground, Data+, and Data-.

8051 SERIAL COMMUNICATION

The 8051 supports a full duplex serial port. Three special function registers

support serial communication.

1. SBUF Register: Serial Buffer (SBUF) register is an 8-bit register. It has

separate SBUF registers for data transmission and for data reception. For a byte

of data to be transferred via the TXD line, it must be placed in SBUF register.

Similarly, SBUF holds the 8-bit data received by the RXD pin and read to accept

the received data.

2. SCON register: The contents of the Serial Control (SCON) register are shown

below. This register contains mode selection bits, serial port interrupt bit (TI and

RI) and also the ninth data bit for transmission and reception (TB8 and RB8).

3. PCON register: The SMOD bit (bit 7) of PCON register controls the baud rate

in asynchronous mode transmission.

SERIAL COMMUNICATION MODES Mode 0 In this mode serial port runs in

synchronous mode. The data is transmitted and received through RXD pin and

TXD is used for clock output.

40

In this mode the baud rate is 1/12 of clock frequency. Mode 1 In this mode SBUF

becomes a 10 bit full duplex transceiver. The ten bits are 1 start bit, 8 data bit and

1 stop bit. The interrupt flag TI/RI will be set once transmission or reception is

over. In this mode the baud rate is variable and is determined by the timer 1

overflow rate. Baud rate = [2smod/32] x Timer 1 overflow Rate = [2smod/32] x

[Oscillator Clock Frequency] / [12 x [256 – [TH1]]] Mode 2 This is similar to

mode 1 except 11 bits are transmitted or received. The 11 bits are, 1 start bit, 8

data bit, a programmable 9th data bit, 1 stop bit. Baud rate = [2smod/64] x

Oscillator Clock Frequency Mode 3 This is similar to mode 2 except baud rate is

calculated as in mode 1

3.9 Data transfer, manipulation, Control and I/O instructions

Data Manipulation Instructions :

Data manipulation instructions perform operations on data and provide the computational capabilities

for the computer. The data manipulation instructions in a typical computer usually divided into three

basic types as follows.

1. Arithmetic instructions

2. Logical and bit manipulation instructions
3. Shift instructions

Let’s discuss one by one.

1. Arithmetic instructions :

The four basic arithmetic operations are addition, subtraction, multiplication, and division. Most

computers provide instructions for all four operations.

Typical Arithmetic Instructions –

Name Mnemonic Example Explanation

Increment

INC

INC B

It will increment the register B by 1

B<-B+1

Decrement

DEC

DEC B

It will decrement the register B by 1

B<-B-1

Add

ADD

ADD B

It will add contents of register B to the contents of

the accumulator

and store the result in the accumulator

41

 AC<-AC+B

Subtract

SUB

SUB B

It will subtract the contents of register B from the

contents of the

accumulator and store the result in the

accumulator

AC<-AC-B

Multiply

MUL

MUL B

It will multiply the contents of register B with the

contents of the

accumulator and store the result in the

accumulator

AC<-AC*B

Divide

DIV

DIV B

It will divide the contents of register B with the

contents of the

accumulator and store the quotient in the

accumulator

AC<-AC/B

Add with carry

ADDC

ADDC

B

It will add the contents of register B and the carry

flag with the

contents of the accumulator and store the result in
the

accumulator

AC<-AC+B+Carry flag

Subtract with

borrow

SUBB

SUBB B

It will subtract the contents of register B and the

carry flag from

the contents of the accumulator and store the

result in the

accumulator

42

 AC<-AC-B-Carry flag

It will negate a value by finding 2’s complement

 of its single operand.

 This means simply operand by -1.

Negate(2’s

complement)

NEG

NEG B
B<-B’+1

2. Logical and Bit Manipulation Instructions :

Logical instructions perform binary operations on strings of bits stored in registers. They are

useful for manipulating individual bits or a group of bits.

Typical Logical and Bit Manipulation Instructions –

Name Mnemonic Example Explanation

Clear

CLR

CLR

It will set the accumulator to 0

AC<-0

Complement

COM

COM

A

It will complement the accumulator

AC<-(AC)’

AND

AND

AND B

It will AND the contents of register B with the contents

of accumulator and store

it in the accumulator

AC<-AC AND B

OR

OR

OR B

It will OR the contents of register B with the contents of

accumulator and store it

in the accumulator

AC<-AC OR B

Exclusive-OR

XOR

XOR B

It will XOR the contents of register B with the contents

of the accumulator and

store it in the accumulator

AC<-AC XOR B

43

Clear carry

CLRC

CLRC

It will set the carry flag to 0

Carry flag<-0

Set carry

SETC

SETC

It will set the carry flag to 1

Carry flag<-1

Complement

carry

COMC

COMC

It will complement the carry flag

Carry flag<- (Carry flag)’

Enable interrupt EI EI It will enable the interrupt

Disable

interrupt

DI

DI

It will disable the interrupt

3. Shift Instructions :

Shifts are operations in which the bits of a word are moved to the left or right. Shift instructions

may specify either logical shifts, arithmetic shifts, or rotate-type operations.

Typical Shift Instructions –
Name Mnemonic

Logical shift right SHR

Logical shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Rotate left ROL

Rotate right through carry RORC

Rotate left through carry ROLC

44

3. 10 simple programming exercises key board and display interface

The key board here we are interfacing is a matrix keyboard. This key board is designed with a particular

rows and columns. These rows and columns are connected to the microcontroller through its ports of the

micro controller 8051. We normally use 8*8 matrix key board. So only two ports of 8051 can be easily

connected to the rows and columns of the key board.

When ever a key is pressed, a row and a column gets shorted through that pressed key and all the

other keys are left open. When a key is pressed only a bit in the port goes high. Which indicates

microcontroller that the key is pressed. By this high on the bit key in the corresponding column is

identified.

Once we are sure that one of key in the key board is pressed next our aim is to identify that key.

To do this we firstly check for particular row and then we check the corresponding column the key

board.

To check the row of the pressed key in the keyboard, one of the row is made high by making one

of bit in the output port of 8051 high . This is done until the row is found out. Once we get the row next

out job is to find out the column of the pressed key. The column is detected by contents in the input

ports with the help of a counter. The content of the input port is rotated with carry until the carry bit is

set.

The contents of the counter is then compared and displayed in the display. This display is

designed using a seven segment display and a BCD to seven segment decoder IC 7447.

The BCD equivalent number of counter is sent through output part of 8051 displays the number of

pressed key.

Circuit diagram of INTERFACING KEY BOARD TO 8051.

The programming algorithm, program and the circuit diagram is as follows. Here program is explained

with comments.

45

Circuit diagram of INTERFACING KEY BOARD TO 8051.

Keyboard is organized in a matrix of rows and columns as shown in the figure. The microcontroller

accesses both rows and columns through the port.

1. The 8051 has 4 I/O ports P0 to P3 each with 8 I/O pins, P0.0 to P0.7,P1.0 to P1.7,

P2.0 to P2.7, P3.0 to P3.7. The one of the port P1 (it understood that P1 means P1.0

to P1.7) as an I/P port for microcontroller 8051, port P0 as an O/P port of

microcontroller 8051 and port P2 is used for displaying the number of pressed key.

2. Make all rows of port P0 high so that it gives high signal when key is pressed.

3. See if any key is pressed by scanning the port P1 by checking all columns for non

zero condition.

4. If any key is pressed, to identify which key is pressed make one row high at a time.

5. Initiate a counter to hold the count so that each key is counted.

6. Check port P1 for nonzero condition. If any nonzero number is there in

[accumulator], start column scanning by following step 9.

7. Otherwise make next row high in port P1.

8. Add a count of 08h to the counter to move to the next row by repeating steps from

step 6.

9. If any key pressed is found, the [accumulator] content is rotated right through the

carry until carry bit sets, while doing this increment the count in the counter till

carry is found.

10. Move the content in the counter to display in data field or to memory location

11. To repeat the procedures go to step 2.

Program to interface matrix keyboard to microcontroller 8051

Start of main program:

46

to check that whether any key is pressed

start: mov a,#00h

mov p1,a ;making all rows of port p1 zero

mov a,#0fh

mov p1,a ;making all rows of port p1 high

press: mov a,p2

jz press ;check until any key is pressed

after making sure that any key is pressed

 mov a,#01h ;make one row high at a time

mov r4,a

mov r3,#00h ;initiating counter

next: mov a,r4

 mov p1,a ;making one row high at a time
 mov a,p2 ;taking input from port A
 jnz colscan ;after getting the row jump to check
 column
 mov a,r4

 rl a ;rotate left to check next row
 mov r4,a

 mov a,r3

 add a,#08h ;increment counter by 08 count
 mov r3,a

 sjmp next ;jump to check next row

after identifying the row to check the colomn following steps are followed

colscan: mov r5,#00h

in: rrc a ;rotate right with carry until get the carry

jc out ;jump on getting carry

inc r3 ;increment one count

jmp in

out: mov a,r3

da a ;decimal adjust the contents of counter

before display

mov p2,a

jmp start ;repeat for check next key.

3.11 Closed loop control of servo motor

47

servomotors / Servo Drivers

 Introduction Features

 Principles Classifications

 Engineering Data Further Information

 Explanation of Terms Troubleshooting

 Servomotors / Servo Drivers

o Products
 Primary Contents

 What Is a Servomotor and What Is a Servo Drive?

 Features

 Principles

What Is a Servomotor and What Is a Servo Drive?

A servomotor is a structural unit of a servo system and is used with a servo drive. The servomotor

includes the motor that drives the load and a position detection component, such as an encoder.

The servo system vary the controlled amount, such as position, speed, or torque, according to the set

target value (command value) to precisely control the machine operation.

Servo System Configuration Example

 Top of page

Features

Precise, High-speed Control

Servomotors excel at position and speed control.

Precise and flexible positioning is possible.

Related Contents

https://www.ia.omron.com/support/guide/14/further_information.html
https://www.ia.omron.com/support/guide/14/explanation_of_terms.html
https://www.ia.omron.com/products/category/motion_drives/servomotors_servo-drivers/index.html
https://www.ia.omron.com/support/guide/14/introduction.html#1
https://www.ia.omron.com/support/guide/14/introduction.html#2
https://www.ia.omron.com/support/guide/14/introduction.html#3
https://www.ia.omron.com/support/guide/14/introduction.html#page-top
https://www.ia.omron.com/support/glossary/atoz/160/index.html

48

Servomotors do not stall even at high speeds. Deviations due to large external forces are corrected

because encoders are used to monitor movement.

Fully-closed Loop

The most reliable form of closed loop. A fully-closed loop is used when high precision is required.

The motor is controlled while directly reading the position of the machine (workpiece or table) using a

linear encoder and comparing the read position with the command value (target value). Therefore, there

is no need to compensate for gear backlash between the motor and mechanical system, feed screw pitch

error, or error due to feed screw torsion or expansion.

Fully-closed Loop System Configuration Example

Semi-closed Loop

This method is commonly used in servo systems.

It is faster and has better positioning precision than an open loop.
Typically an encoder or other detector is attached behind the motor. The encoder detects the rotation

angle of a feed screw (ball screw) and provides it as feedback of the machine (workpiece or table) travel

position. This means that the position of the machine is not detected directly.

The characteristics depend on where the detector is installed.

Installation location of

detector

Behind motor

Motor side of

feed screw

Opposite of

motor side of

feed screw

Gear backlash
Compensation

required
Compensation
not required

←

Ball screw or nut torsion Affected ← Hardly affected

Ball screw expansion or

contraction
Affected ← ←

Ball screw pitch error
Compensation

required
← ←

Semi-closed Loop System Configuration Example

https://www.ia.omron.com/support/glossary/atoz/160/index.html
https://www.ia.omron.com/support/glossary/atoz/3332/index.html

49

3.12 stepper motor control

.

In Bipolar stepper motor there is just four wires coming out from two sets of coils, means there are no

common wire.

Stepper motor is made up of a stator and a rotator. Stator represents the four electromagnet coils which

remain stationary around the rotator, and rotator represents permanent magnet which rotates. Whenever

the coils energised by applying the current, the electromagnetic field is created, resulting the rotation of

rotator (permanent magnet). Coils should be energised in a particular sequence to make the rotator

rotate. On the basis of this “sequence” we can divide the working method of Unipolar stepper motor in

three modes: Wave drive mode, full step drive mode and half step drive mode.

Wave drive mode: In this mode one coil is energised at a time, all four coil are energised one after

another. It produces less torque in compare with Full step drive mode but power consumption is less.

Following is the table for producing this mode using microcontroller, means we need to give Logic 1 to

the coils in the sequential manner

50

Full Drive mode: In this, two coil are energised at the same time producing high torque. Power

consumption is higher. We need to give Logic 1 to two coils at the same time, then to the next two coils

and so on.

Steps A B C D

1 1 1 0 0

2 0 1 1 0

3 0 0 1 1

4 1 0 0 1

Half Drive mode: In this mode one and two coils are energised alternatively,

means firstly one coil is energised then two coils are energised then again one coil

is energised then again two, and so on. This is combination of full and wave drive

mode, and used to increase the angular rotation of the motor.

Steps A B C D

1 1 0 0 0

2 1 1 0 0

3 0 1 0 0

4 0 1 1 0

51

5 0 0 1 0

6 0 0 1 1

7 0 0 0 1

8 1 0 0 1

Interfacing Stepper Motor with 8051 Microcontroller

Interfacing with 8051 is very easy we just need to give the 0 and 1 to the four wires of stepper motor

according to the above tables depending on which mode we want to run the stepper motor. And rest two

wires should be connected to a proper 12v supply (depending on the stepper motor). Here we have used

the unipolar stepper motor. We have connected four ends of the coils to the first four pins of port 2 of

8051 through the ULN2003A.

52

8051 doesn’t provide enough current to drive the coils so we need to use a current driver IC that is

ULN2003A. ULN2003A is the array of seven NPN Darlington transistor pairs. Darlington pair is

constructed by connecting two bipolar transistors to achieve high current amplification. In ULN2003A,

7 pins are input pins and 7 pins are output pins, two pins are for Vcc (power supply) and Ground. Here

we are using four input and four output pins. We can also use L293D IC in place of ULN2003A for

current amplification.

You need to find out four coil wires and two common wires very carefully otherwise motor will not

rotate. You can find it out by measuring resistance using multimeter, multimeter won’t show any

readings between the wires of two phases. Common wire and the other two wire in the same phase

should show the same resistance, and the two end points of the two coils in the same phase will show the

twice resistance in compared with resistance between common point and one end point.

53

Two mark questions and Answers

1. What are the special functoin register?

The special function register are stack pointer, index pointer (DPL and DPH), I/O port addresses,

status(PSW) and accumulator.

2. What are the uses of accumulator register?

The accumulator registers (A and B at addresses OEOh and OFOh, respectively) are used to store

temporary values and the results of arithmetic operations.

3. What is PSW?

Program status word (PSW) is the set of flags that contains the status information and is considered as

one of the special function register.

4. What is stack pointer (sp)?

Stack pointer (SP) is a 8 bit wide register and is incremented before the data is stored into the stack

using PUSH or CALL instructions.

It contains 8-bit stack top address. It is defined anywhere in the on-chip 128-byte RAM. After reset, the

SP register is initialized to 07.

After each write to stack operation, the 8-bit contents of the operand are stored onto the stack, after

incrementing the SP register by one.

It is not a top-down data structure. It is allotted an address in the special function register bank.

5. What is data pointer (DTPR)?

It is a 16-bit register that contains a higher byte (DPH) and lower byte (DPL) of a 16-bit external data

RAM address.

54

It is accessed as a 16-bit register or two 8-bit registers. It has been allotted two addresses in the special

function register bank, for its two bytes DPH and DPL.

6. Why oscillator circuit is used?

Oscillator circuit is used to generate the basic timing clock signal for the operation of the circuit using

crystal oscillator.

7. What is the purpose of using instruction register?

Instruction register is used for the purpose of decoding the opcode of an instruction to be executed and

gives information to the timing and control unit generating necessary signals for the execution of the

instruction.

8. Give the purpose of ale/prog signal.

ALE/PROG is an address latch enable output pulse and indicates that valid address bits available on the

respective pins.

The ALE pulses are emitted at a rate of one-sixth of the oscillator frequency. The signal is valid only for

external memory accesses.

It may be used for external timing or clockwise purpose. One ALE pulse is skipped during each access

to external data memory.

9. Explain the two power saving mode of operation. The two power saving modes of operation are:

I. Idle mode:

In this mode, the oscillator continues to run and the interrupt, serial port and timer blocks are active, but

the clock to the CPU is disabled. The CPU status is preserved. This mode can be terminated with a

hardware interrupt or hardware reset signal. After this, the CPU resumes program execution from where

it left off.

II. Power down mode:

In this mode, the on-chip oscillator is stopped. All the functions of the controller are held maintaining

the contents of RAM. The only way to terminate this mode is hardware reset. The reset redefines all the

SFRs but the RAM contents are left unchanged.

55

10. Differentiate between program memory and data memory. i. In stores the programs to be

executed.

ii. It stores only program code which is to be executed and thus it need not be written, so it is

implemented using EPROM It stores the data, line intermediate results, variables and constants required

for the execution of the program.

The data memory may be read from or written to and thus it is implemented using RAM.

11. What are addressing modes?

The various ways of accessing data are called addressing modes.

12. Give the addressing modes of 8051?

There are six addressing modes in 8051.They are Direct addressing Indirect addressing Register

instruction

Registerspecific (register implicit)

Immediate mode Indexed addressing

10 mark questions

1. List all the registers used in 8051 microcontroller in brief.

2. Draw the pin diagram of 8051 microcontroller and explain each one.

3. Draw the memory organization of micro controller 8051 and eplain.

4. What are all addressing modes of micro controller 8051? explain with examples.

5. Draw the block diagram of 8051 microcontroller and explain.

6. What is 8051 micro-controller system? ? Give its block diagram representation? Also describe

its all ports in details?

http://en.wikipedia.org/wiki/Addressing_mode

1

UNIT 4

MOTOR CONTROL SIGNAL PROCESSORS

4.1 INTRODUCTION

The Texas Instruments TMS320LF2407 DSP Controller (referred to as the LF2407 in

this text) is a programmable digital controller with a C2xx DSP central processing unit (CPU) as

the core processor. The LF2407 contains the DSP core processor and useful peripherals

integrated onto a single piece of silicon. The LF2407 combines the powerful CPU with on-chip

memory and peripherals. With the DSP core and control-oriented peripherals integrated into a

single chip, users can design very compact and cost-effective digital control systems.

The LF2407 DSP controller offers 40 million instructions per second (MIPS)

performance. This high processing speed of the C2xx CPU allows users to compute

parameters in real time rather than look up approximations from tables stored in memory. This

fast performance is well suited for processing control parameters in applications such as notch

filters or sensor less motor control algorithms where a large amount of calculations must be

computed quickly.

While the “brain” of the LF2407 DSP is the C2xx core, the LF2407 contains several

control-orientated peripherals onboard (see Fig. 3.1). The peripherals on the LF2407 make

virtually any digital control requirement possible. Their applications range from analog to digital

conversion to pulse width modulation (PWM) generation. Communication peripherals make

possible the communication with external peripherals, personal computers, or other DSP

processors. Below is a brief listing of the different peripherals onboard the LF2407 followed by a

graphical layout depicted in Fig. 3.1.

The LF2407 peripheral set includes:

• Two Event Managers (A and B)

• General Purpose (GP) timers

• PWM generators for digital motor control

• Analog-to-digital converter

• Controller Area Network (CAN) interface

2

• Serial Peripheral Interface (SPI) – synchronous serial port

• Serial Communications Interface (SCI) – asynchronous serial port

• General-Purpose bi-directional digital I/O (GPIO) pins

• Watchdog Timer (“time-out” DSP reset device for system integrity)

Figure 3.1 Graphical overview of DSP core and peripherals on the LF2407.

4.2 Brief Introduction to Peripherals

The following peripherals are those that are integrated onto the LF2407 chip. Refer to

Fig. 1.1 to view the pin-out associated with each peripheral.

3

Event Managers (EVA, EVB)

There are two Event Managers on the LF2407, the EVA and EVB. The Event Manager is

the most important peripheral in digital motor control. It contains the necessary functions

needed to control electromechanical devices. Each EV is composed of functional “blocks”

including timers, comparators, and capture units for triggering on an event, PWM logic

circuits, quadrature-encoder–pulse (QEP) circuits, and interrupt logic.

The Analog-to-Digital Converter (ADC)

The ADC on the LF2407 is used whenever an external analog signal needs to be

sampled and converted to a digital number. Examples of ADC applications range from

sampling a control signal for use in a digital notch filtering algorithm or using the ADC in a

control feedback loop to monitor motor performance. Additionally, the ADC is useful in motor

control applications because it allows for current sensing using a shunt resistor instead of an

expensive current sensor.

The Control Area Network (CAN) Module

While the CAN module will not be covered in this text, it is a useful peripheral for

specific applications of the LF2407. The CAN module is used for multi-master serial

communication between external hardware. The CAN bus has a high level of data integrity

and is ideal for operation in noisy environments such as in an automobile, or industrial

environments that require reliable communication and data integrity.

Serial Peripheral Interface (SPI) and Serial Communications Interface (SCI)

The SPI is a high-speed synchronous communication port that is mainly used for

communicating between the DSP and external peripherals or another DSP device. Typical

uses of the SPI include communication with external shift registers, display drivers, or ADCs.

The SCI is an asynchronous communication port that supports asynchronous serial (UART)

digital communication between the CPU and other asynchronous peripherals that use the

standard NRZ (non-return-to-zero) format. It is useful in communication between external

devices and the DSP. Since these communication peripherals are not directly related to motion

control applications, they will not be discussed further in this text.

4

Watchdog Timer (WD)

The Watchdog timer (WD) peripheral monitors software and hardware operations and

asserts a system reset when its internal counter overflows. The WD timer (when enabled) will

count for a specific amount of time. It is necessary for the user’s software to reset the WD

timer periodically so that an unwanted reset does not occur. If for some reason there is a

CPU disruption, the watchdog will generate a system reset. For example, if the software enters

an endless loop or if the CPU becomes temporarily disrupted, the WD timer will overflow and a

DSP reset will occur, which will cause the DSP program to branch to its initial starting point.

Most error conditions that temporarily disrupt chip operation and inhibit proper CPU function

can be cleared by the WD function. In this way, the WD increases the reliability of the CPU, thus

ensuring system integrity.

General Purpose Bi-Directional Digital I/O (GPIO) Pins

Since there are only a finite number of pins available on the LF2407 device, many of the

pins are multiplexed to either their primary function or the secondary GPIO function. In

most cases, a pin’s second function will be as a general-purpose input/output pin. The GPIO

capability of the LF2407 is very useful as a means of controlling the functionality of pins and

also provides another method to input or output data to and from the device. Nine 16-bit control

registers control all I/O and shared pins. There are two types of these registers:

• I/O MUX Control Registers (MCRx) – Used to control the multiplexer selection that

Chooses between the primary function of a pin or the general-purpose I/O function.

• Data and Direction Control Registers (PxDATDIR) – Used to control the data and data

Direction of bi-directional I/O pins.

Phase Locked Loop (PLL) Clock Module

The phase locked loop (PLL) module is basically an input clock multiplier that allows

the user to control the input clocking frequency to the DSP core. External to the LF2407, a

clock reference (can oscillator/crystal) is generated. This signal is fed into the LF2407 and is

multiplied or divided by the PLL. This new (higher or lower frequency) clock signal is then

used to clock the DSP core. The LF2407’s PLL allows the user to select a multiplication

factor ranging from 0.5X to 4X that of the external clock signal. The default value of the PLL

is 4X.

5

Memory Allocation Spaces

The LF2407 DSP Controller has three different allocations of memory it can use: Data,

Program, and I/O memory space. Data space is used for program calculations, look-up

tables, and any other memory used by an algorithm. Data memory can be in the form of the on-

chip random access memory (RAM) or external RAM. Program memory is the location of user’s

program code. Program memory on the LF2407 is either mapped to the off-chip RAM

(MP/MC- pin =1) or to the on-chip flash memory (MP/MC- = 0), depending on the logic value

of the MP/MC-pin.

I/O space is not really memory but a virtual memory address used to output data to

peripherals external to the LF2407. For example, the digital-to-analog converter (DAC) on the

TM

Spectrum Digital evaluation module is accessed with I/O memory. If one desires to output

data to the DAC, the data is simply sent to the configured address of I/O space with the “OUT”

command. This process is similar to writing to data memory except that the OUT command is

used and the data is copied to and outputted on the DAC instead of being stored in memory.

4.3. Types of Physical Memory

Random Access Memory (RAM)

The LF2407 has 544 words of 16 bits each in the on-chip DARAM. These 544 words are

partitioned into three blocks: B0, B1, and B2. Blocks B1 and B2 are allocated for use only as

data memory. Memory block B0 is different than B1 and B2. This memory block is normally

configured as Data Memory, and hence primarily used to hold data, but in the case of the B0

block, it can also be configured as Program Memory. B0 memory can be configured as

program or data memory depending on the value of the core level “CNF” bit.

• (CNF=0) maps B0 to data memory.

• (CNF=1) maps B0 to program memory.

The LF2407 also has 2K of single-access RAM (SARAM). The addresses associated

with the SARAM can be used for both data memory and program memory, and are software

configurable to the internal SARAM or external memory.

6

Non-Volatile Flash Memory

The LF2407 contains 32K of on-chip flash memory that can be mapped to program space

if the MP/MC-pin is made logic 0 (tied to ground). The flash memory provides a permanent

location to store code that is unaffected by cutting power to the device. The flash memory can be

electronically programmed and erased many times to allow for code development. Usually, the

external RAM on the LF2407 Evaluation Module (EVM) board is used instead of the flash for

code development due to the fact that a separate “flash programming” routine must be performed

to flash code into the flash memory. The on-chip flash is normally used in situations where the

DSP program needs to be tested where a JTAG connection is not practical or where the DSP

needs to be tested as a “stand-alone” device. For example, if a LF2407 was used to develop a

DSP control solution to an automobile braking system, it would be somewhat impractical to have

a DSP/JTAG/PC interface in a car that is undergoing performance testing.

4.1.1 Introduction to the C2xx DSP Core and Code Generation

The heart of the LF2407 DSP Controller is the C2xx DSP core. This core is a 16-bit fixed

point processor, meaning that it works with 16-bit binary numbers. One can think of the C2xx as

the central processor in a personal computer. The LF2407 DSP consists of the C2xx DSP core

plus many peripherals such as Event Managers, ADC, etc., all integrated onto one single chip.

4.1.2. The Components of the C2xx DSP Core

The DSP core (like all microprocessors) consists of several subcomponents necessary to

perform arithmetic operations on 16-bit binary numbers. The following is a list of the multiple

subcomponents found in the C2xx core which we will discuss further:

• A 32-bit central arithmetic logic unit (CALU)

• A 32-bit accumulator (used frequently in programs)

• Input and output data-scaling shifters for the CALU

• A (16-bit by 16-bit) multiplier

• A product-scaling shifter

• Eight auxiliary registers (AR0 – AR7) and an auxiliary register arithmetic unit

(ARAU)

Each of the above components is either accessed directly by the user code or is indirectly

used during the execution of an assembly command.

7

Central Arithmetic Logic Unit (CALU)

The C2xx performs 2s-complement arithmetic using the 32-bit CALU. The CALU uses

16-bit words taken from data memory, derived from an immediate instruction, or from the 32-

bit multiplier result. In addition to arithmetic operations, the CALU can perform Boolean

operations. The CALU is somewhat transparent to the user. For example, if an arithmetic

command is used, the user only needs to write the command and later read the output from the

appropriate register. In this sense, the CALU is “transparent” in that it is not accessed directly by

the user.

Accumulator

The accumulator stores the output from the CALU and also serves as another input to the CALU

(many arithmetic commands perform operations on numbers that are currently stored in the

accumulator; versus other memory locations). The accumulator is 32 bits wide and is divided

into two sections, each consisting of 16 bits. The high-order bits consist of bits 31 through 16,

and the low-order bits are made up of bits 15 through 0. Assembly language instructions are

provided for storing the high- and low-order accumulator words to data memory. In most cases,

the accumulator is written to and read from directly by the user code via assembly commands. In

some instances, the accumulator is also transparent to the user (similar to the CALU operation in

that it is accessed “behind the scenes”).

Scaling Shifters

The C2xx has three 32-bit shifters that allow for scaling, bit extraction, extended arithmetic, and

overflow-prevention operations. The scaling shifters make possible commands that shift data left

or right. Like the CALU, the operation of the scaling shifters is “transparent” to the user. For

example, the user needs only to use a shift command, and observe the result. Any one of the

three shifters could be used by the C2xx depending on the specific instruction entered. The

following is a description of the three shifters:

• Input data-scaling shifter (input shifter): This shifter left-shifts 16-bit input data by 0 to 16

bits to align the data to the 32-bit input of the CALU. For example, when the user uses a

command such as “ADD 300h, 5”, the input shifter is responsible for first shifting the data in

memory address “300h” to the left by five places before it is added to the contents of the

accumulator.

8

• Output data-scaling shifter (output shifter): This shifter left-shifts data from the accumulator

by 0 to 7 bits before the output is stored to data memory. The content of the accumulator

remains unchanged. For example, when the user uses a command such as “SACL 300h, 4”,

the output shifter is responsible for first shifting the contents of the accumulator to the left by

four places before it is stored to the memory address “300h”.

 Product-scaling shifter (product shifter): The product register (PREG) receives the output

of the multiplier. The product shifter shifts the output of the PREG before that output is sent

to the input of the CALU. The product shifter has four product shift modes (no shift, left shift

by one bit, left shift by four bits, and right shift by six bits), which are useful for performing

multiply/accumulate operations, fractional arithmetic, or justifying fractional products.

Multiplier

The multiplier performs 16-bit, 2s-complement multiplication and creates a 32-bit result.

In conjunction with the multiplier, the C2xx uses the 16-bit temporary register (TREG) and the

32-bit product register (PREG).

The operation of the multiplier is not as “transparent” as the CALU or shifters. The

TREG always needs to be loaded with one of the numbers that are to be multiplied. Other than

this prerequisite, the multiplication commands do not require any more actions from the user

code. The output of the multiply is stored in the PREG, which can later be read by the user code.

Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

The ARAU generates data memory addresses when an instruction uses indirect addressing to

access data memory (more on indirect addressing will be covered later along with assembly

programming). Eight auxiliary registers (AR0 through AR7) support the ARAU, each of which

can be loaded with a 16-bit value from data memory or directly from an instruction. Each

auxiliary register value can also be stored in data memory. The auxiliary registers are mainly

used as “pointers” to data memory locations to more easily facilitate looping or repeating

algorithms. They are directly written to by the user code and are automatically incremented or

decremented by particular assembly instructions during a looping or repeating operation. The

auxiliary register pointer (ARP) embedded in status register ST0 references the auxiliary register.

The status registers (ST0, ST1) are core level registers where values such as the Data Page (DP)

and ARP located.

9

4.2. System Configuration Registers

The System Control and Status Registers (SCSR1, SCSR2) are used to configure or

display fundamental settings of the LF2407. For example, these fundamental settings include the

clock speed (clock pre-scale setting) of the LF2407, which peripherals are enabled,

microprocessor/microcontroller mode, etc. Bits are controlled by writing to the corresponding

data memory address or the logic level on an external pin as with the

microprocessor/microcontroller (MP/MC) select bit. The bit descriptions of these two registers

(mapped to data memory) are listed below.

System Control and Status Register 1 (SCSR1) — Address 07018h

Bit 15 Reserved

Bit 14 CLKSRC. CLKOUT pin source select

0 CLKOUT pin has CPU Clock (40 MHz on a 40-MHz device) as the output

1 CLKOUT pin has Watchdog clock as the output

Bits 13–12 LPM (1:0). Low-power mode select

These bits indicate which low-power mode is entered when the CPU executes the IDLE

instruction. Description of the low-power modes:

10

Bits 11–9

PLL Clock prescale select. These bits select the PLL multiplication factor for the input clock.

Bit 8 Reserved

Bit 7 ADC CLKEN. ADC module clock enable control bit.

0 Clock to module is disabled (i.e., shut down to conserve power).

1 Clock to module is enabled and running normally.

Bit 6 SCI CLKEN. SCI module clock enable control bit.

0 Clock to module is disabled (i.e., shut down to conserve power).

1 Clock to module is enabled and running normally.

Bit 5 SPI CLKEN. SPI module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 4 CAN CLKEN. CAN module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 3 EVB CLKEN. EVB module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Bit 2 EVA CLKEN. EVA module clock enable control bit

0 Clock to module is disabled (i.e., shut down to conserve power)

1 Clock to module is enabled and running normally

Note: In order to modify/read the register contents of any peripheral, the clock to that peripheral

must be enabled by writing a 1 to the appropriate bit.

11

Bit 1 Reserved

Bit 0 ILLADR. Illegal Address detect bit

If an illegal address has occurred, this bit will be set. It is up to software to clear this bit

following an illegal address detects. This bit is cleared by writing a 1 to it and should be cleared

as part of the initialization sequence. Note: An illegal address will cause a Non-Mask able

Interrupt (NMI).

System Control and Status Register 2 (SCSR2) — Address 07019h

Bits 15–7 Reserved. Writes have no effect; reads are undefined

Bit 6 Input Qualifier Clocks.

An input-qualifier circuitry qualifies the input signal to the CAP1–6, XINT1/2,

ADCSOC, and PDPINTA/B pins in the 240xA devices. The I/O functions of these pins do not

use the input-qualifier circuitry. The state of the internal input signal will change only after the

pin is held high/low for 6 (or 12) clock edges. This ensures that a glitch smaller than (or equal to)

5 (or 11) CLKOUT cycles wide will not change the internal pin input state. The user must hold

the pin high/low for 6 (or 12) cycles to ensure that the device will see the level change. This bit

determines the width of the glitches (in number of internal clock cycles) that will be blocked.

Note that the internal clock is not the same as CLKOUT, although its frequency is the same as

CLKOUT.

0 The input-qualifier circuitry blocks glitches up to 5 clock cycles long

1 The input-qualifier circuitry blocks glitches up to 11 clock cycles long

Note: This bit is applicable only for the 240xA devices, not for the 240x devices because they

lack an input-qualifier circuitry.

12

Bit 5 Watchdog Override. (WD protect bit)

After RESET, this bit gives the user the ability to disable the WD function through

software (by setting the WDDIS bit = 1 in the WDCR). This bit is a clear-only bit and defaults to

a 1 after reset.

Note: This bit is cleared by writing a 1 to it.

0 Protects the WD from being disabled by software. This bit cannot be set to 1 by

software. It is a clear-only bit, cleared by writing a 1.

1 This is the default reset value and allows the user to disable the WD through the

WDDIS bit in the WDCR. Once cleared, however, this bit can no longer be set to 1 by software,

thereby protecting the integrity of the WD timer.

Bit 4 XMIF Hi-Z Control

This bit controls the state of the external memory interface (XMIF) signals.

0 XMIF signals in normal driven mode; i.e., not Hi-Z (high impedance).

1 All XMIF signals are forced to Hi-Z state.

Bit 3 Boot Enable

This bit reflects the state of the BOOT_EN / XF pin at the time of reset. After reset and device

has “booted up”, this bit can be changed in software to re-enable Flash memory visibility or

return to active Boot ROM.

0 Enable Boot ROM — Address space 0000 — 00FF is now occupied by the on-

chip Boot ROM Block. Flash memory is totally disabled in this mode. Note: There is no on-chip

boot ROM in ROM devices (i.e., LC240xA)

1 Disable Boot ROM — Program address space 0000 — 7FFF is mapped to on-

chip Flash memory in the case of LF2407A and LF2406A. In the case of LF2402A, addresses

0000 – 1FFF are mapped

Bit 2 Microprocessor/Microcontroller Select

This bit reflects the state of the MP/MC pin at time of reset. After reset, this bit can be changed

in software to allow dynamic mapping of memory on and off chip.

0 Set to Microcontroller mode — Program Address range 0000 — 7FFF is mapped

internally (i.e., Flash)

1 Set to Microprocessor mode — Program Address range 0000 — 7FFF is mapped

externally (i.e., customer provides external memory device.)

13

Bits 1–0 SARAM Program/Data Space Select

DON PON SARAM status

0 0 SARAM not mapped (disabled), address space allocated to external memory

0 1 SARAM mapped internally to Program space

1 0 SARAM mapped internally to Data space

1 1 SARAM block mapped internally to both Data and Program spaces.

This is the default or reset value

4.3. Memory Addressing Modes

There are three basic memory addressing modes used by the C2xx instruction set. The three

modes are:

• Immediate addressing mode (does not actually access memory)

• Direct addressing mode

• Indirect addressing mode

4.4.1 Immediate Addressing Mode

In the immediate addressing mode, the instruction contains a constant to be manipulated by the

instruction. Even though the name “immediate addressing” suggests that a memory location is

accessed, immediate addressing is simply dealing with a user-specified constant which is usually

included in the assembly command syntax. The “#” sign indicates that the value is an immediate

address (just a constant). The two types of immediate addressing modes are:

Short-immediate addressing. The instructions that use short-immediate addressing have an 8-

bit, 9-bit, or 13-bit constant as the operand.

For example, the instruction:

LACL #44h ; loads lower bits of accumulator with

; Eight-bit constant (44h in this case)

Note: The LACL command will work only with a short 8-bit constant. If you want to load a long

16-bit constant, then use the LACC command.

Long-immediate addressing. Instructions that use long-immediate addressing have a 16-bit

constant as an operand. This 16-bit value can be used as an absolute constant or as a 2s-

complement value.

For example, the instruction:

LACC #4444h ; loads accumulator with up to a 16-bit

14

; Constant (4444h in this case)

If you need to use registers or access locations in data memory, you must use either direct or

indirect addressing.

4,5. Direct Addressing Mode

In direct addressing, data memory is first addressed in blocks of 128 words called data

pages. The entire 64K of data memory consists of 512 DPs labeled 0 through 511, as shown in

the Fig. 3.2. The current DP is determined by the value in the 9-bit DP pointer in status register

ST0. For example, if the DP value is “0 0000 0000”, the current DP is 0. If the DP value is “0

0000 0010”, the current data page is 2. The DP of a particular memory address can be found

easily by dividing the address (in hexadecimal) by 80h.

For example: For the data memory address 0300h, 300h/80h = 6h so the DP pointer is 6h.

Likewise, the DP pointer for 200h is 4h.

Figure 3.2 Data pages and corresponding memory ranges.

In addition to the DP, the DSP must know the particular word being referenced on that

page. This is determined by a 7-bit offset. The 7-bit offset is simply the 7 least significant bits

(LSBs) of the memory address. The DP and the offset make up the 16-bit memory address (see

Fig. 3.3).

15

Figure 3.3 Data page and offset make up a 16-bit memory address.

When you use direct addressing, the processor uses the 9 DP bits and the 7 LSBs of the

instruction to obtain the true memory address. The following steps should be followed when

using direct addressing:

1 Set the DP. Load the appropriate value (from 0 to 511 in decimal or 0-1FF in hex) into

the DP. The easiest way to do this is with the LDP instruction. The LDP instruction loads

the DP directly to the ST0 register without affecting any other bits of the ST0.

LDP #0E1h ; sets the data page pointer to E1h

Or

LDP #225 ; sets the data page pointer to 225 decimal

; Which is E1 in hexadecimal

2 Specify the offset. For example, if you want the ADD instruction to use the value at the

second address of the current data page, you would write: ADD 1h

If the data page points to 300h, then the above instruction will add the contents of 301h to the

accumulator

Note: You do not have to set the data page prior to every instruction that uses direct

addressing. If all the instructions in a block of code access the same data page, you can simply

load the DP before the block. However, if various data pages are being accessed throughout the

block of code be sure the DP is changed accordingly.

Examples of Direct Addressing

In Example 1, the first instruction loads the DP with 0 0000 01002 to set the current data

page to 4. The ADD instruction then references a data memory address that is generated as

16

shown following the program code. Before the ADD instruction is executed, the opcode is

loaded into the instruction register. Together, the DP and the seven LSBs of the instruction

register form the complete 16-bit address, 0000 0010 0000 10012 (0209h).

In Example 2, the ADD instruction references a data memory address that is generated as

shown following the program code. For any instruction that performs a shift of 16, the shift value

is not embedded directly in the instruction word; instead, all eight MSBs contain an opcode that

not only indicates the instruction type, but also a shift of 16. The eight MSBs of the instruction

word indicate an ADD with a shift of 16.

Example 1 Using Direct Addressing with ADD (Shift of 0 to 15)

Example 2 Using Direct Addressing with ADD (Shift of 16)

17

In Example 3, the ADDC instruction references a data memory address that is generated

as shown following the program code. You should note that if an instruction does not perform

shifts (such as the ADDC instruction), all eight MSBs of the instruction contain the opcode for

the instruction type.

Example 3 Using Direct Addressing with ADDC

18

4.5.2 Indirect Addressing Mode

Indirect addressing is a powerful way of addressing data memory. Indirect addressing

mode is not dependent on the current data page as is direct addressing. Instead, when using

indirect addressing you load the memory space that you would like to access into one of the

auxiliary registers (ARx). The current auxiliary register acts as a pointer that points to a specific

memory address.

The register pointed to by the ARP is referred to as the current auxiliary register or

current AR. To select a specific auxiliary register, load the 3-bit auxiliary register pointer (ARP)

with a value from 0 to 7. The ARP can be loaded with the MAR instruction or by the LARP

instruction. An ARP value can also be loaded by using the ARx operand after any instruction

that supports indirect addressing as seen below.

Example of using MAR:

ADD *, AR1 ; Adds using current *, then makes AR1 the

; New current AR for future uses

Example of using LARP

LARP #2 ; this will make AR2 the current AR

The C2xx provides four types of indirect addressing options:

 No increment or decrement. The instruction uses the content of the current auxiliary

register as the data memory addresses but neither increments nor decrements the content

of the current auxiliary register.

 Increment or decrement by 1. The instruction uses the content of the current auxiliary

register as the data memory address and then increments or decrements the content of the

current auxiliary register by one.

 Increment or decrement by an index amount. The value in AR0 is the index amount.

The instruction uses the content of the current auxiliary register as the data memory

address and then increments or decrements the content of the current auxiliary register by

the index amount.

 Increment or decrement by an index amount using reverse carry. The value in AR0 i

the index amount. After the instruction uses the content of the current auxiliary register as

the data memory address, that content is incremented or decremented by the index

19

amount. The addition and subtraction process is accomplished with the carry propagation

reversed and is useful in fast Fourier transforms algorithms.

Table 4.1 displays the various operands that are available for use with instructions while using

indirect addressing mode.

Table 3.1 Indirect addressing operands.

Examples of Indirect Addressing

Example 1 illustrates how the instruction register is loaded with the value shown when the ADD

instruction is fetched from program memory.

Example 1. Indirect Addressing—No Increment or Decrement

20

Example 2, illustrates how the instruction register is loaded with the value shown when the ADD

instruction is fetched from program memory.

Example 2. Indirect Addressing—Increment by 1

Example 3. Indirect Addressing—Decrement by 1

Example 4. Indirect Addressing—Increment by Index Amount

Example 5. Indirect Addressing—Decrement by Index Amount

21

4.6 Assembly Programming Using the C2xx DSP Instruction Set

The complete detailed instruction set for the C2xx DSP core can be found in the Texas

Instruments TMS320F/C24x DSP Controllers Reference Guide: CPU and Instruction Set;

Literature Number: SPRU160C. This reference guide contains a complete descriptive listing on

syntax, operands, binary opcode, instruction execution order, status bits affected by the

instruction, number of memory words required to store the instruction, and clock-cycles used by

the instruction. The Texas Instruments documentation on the assembly instruction set is very

well written. Each assembly instruction has a complete explanation of the instruction, all

optional operands, and several examples of the instructions used. Since including the instruction

set and complete documentation would make this book excessively long, we will assume the

reader has access to the documentation referred to above.

We will therefore focus on developing code, not the instruction set itself. Each command starts

with the basic assembly instruction. Each command supports specific addressing modes and

options. For example, the ADD command will work with direct, indirect, and immediate

addressing. In addition to the basic command, many instructions have additional options that

may be used with the instruction. For example, the ADD command supports left shifting of the

data before it is added to the accumulator.

The following is the instruction syntax for the ADD command:

ADD dma [, shift] ; Direct addressing

ADD dma, 16 ; Direct with left shift of 16

ADD ind [, shift [, ARn]] ; Indirect addressing

ADD ind, 16 [, ARn] ; Indirect with left shift of 16

ADD #k ; short immediate addressing

ADD #lk [, shift] ; Long immediate addressing

The following is a list of the various notations used in C2xx syntax examples:

Italics Italic symbols in instruction syntax represent variables.

Example:

LACC dma, you can use several ways to address the dma (data memory address).

LACC *

Or

LACC 200h

22

Or

LACC v ; where “v” is any variable assigned to data memory

Where *, 200h, and v are the data memory addresses

Boldface Characters Boldface characters must be included in the syntax.

Example:

LAR dma, 16 ; direct addressing with left shift of 16

LAR AR1, 60h, 16 ; load auxiliary AR1 register with the memory contents of 60h that

was left shifted 16 bits

Example:

LACC dma, [shift] ; optional left shift from 0, 15; defaults to 0

LACC main_counter, 8 ; shifts contents of the variable “main_counter” data 8 places to

the left before loading accumulator

[] An optional operand may be placed in the placed here.

Example:

LACC ind [, shift [, AR n]_] Indirect addressing

LACC * ; load Accum. W/contents of the memory

; Location pointed to by the current AR.

LACC *, 5 ; load Accum. With the contents of the memory

; Location pointed to by the current AR after

; The memory contents are left shifted by 5

; Bits.

LACC *, 0, AR3 ; load Accum. With the contents of the memory

; Location pointed to by the current AR after

; The memory contents are left shifted by 5

; Bits. Now you have the option of choosing

; A new AR. In this case, AR3 will become the

; New AR.

[, x1 [, x2]] Operands x1 and x2 are optional, but you cannot include x2 without also including

x1.

23

It is optional when using indirect addressing to modify the data. Once you supply a left

shift value from 0…15 (even a shift of 0), then you have the option of changing to a new current

auxiliary register (AR).

The # sign is prefix that signifies that the number used is a constant as opposed to

memory location.

Example:

RPT #15 ; this syntax is using short immediate addressing. It will repeat the next

instruction 15+1 times.

LACC #60h ; this will load the accumulator with the

; Constant 60h

LACC 60h ; However, this instruction will load the

; Accumulator with the contents in the data

; Memory location 60h, not the constant #60h

We will now provide a few examples of using the instruction set. Example 2.1 performs a few

arithmetic functions with the DSP core and illustrates the nature of assembly programming.

Programming with the assembly instruction set is somewhat different than languages such as C.

In a high-level language, to add two numbers we might just code “c = a + b”. In assembly, the

user must be sure to code everything that needs to happen in order for a task to be executed. Take

the following example:

Example 2.1 - Add the two numbers “2” and “3”:

LDP #6h ; loads the proper DP for dma 300h

SPLK #2, 300h ; store the number “2” in memory address 300h

LACL #3 ; load the accumulator with the number “3”

ADD 300h ; adds contents of 300h (“2”) to the contents

; of the accumulator (“3”); accumulator = 5

Another way:

LDP #6h ; loads the proper DP for dma 300h

SPLK #2h, 300h ; store the number “2h” in memory address

; 300h

SPLK #3h, 301h ; stores the number “3h” into memory address

; 301h

24

LACL 300h ; load the accumulator with the contents in

; Memory location 300h

ADD 301h ; adds contents of memory address 301h (“3h”)

; To the contents of the accumulator (“2h”)

;accumulator = 5h

Looping algorithms are very common in all programming languages. In high-level languages, the

“For” and “While” loops can be used. However, in assembly, we need a slightly different

approach to perform a repeating algorithm. The following example is an algorithm that stores the

value “1” to memory locations 300h, 301h, 302h, 303h, and 304h.

Example 2.2- Looping Algorithm Using the Auxiliary Register

LAR AR0, #4 ; load auxiliary register 0 with #4

LAR AR1, #300h ; this AR will be used as a memory pointer

LACL #1h ; loads “1” into the accumulator

LOOPER MAR *, AR1 ; makes AR1 the next current AR

SACL *+, AR0 ; writes contents of accumulator to address

; pointed to by AR1, the “+” increments AR1

; By 1, next current AR is AR0

BANZ LOOPER ; branch to LOOPER while current AR is not 0;

decrements current AR by 1 and branches

; back to LOOPER

One might wonder if assembly language is so tedious to use, why not just program in a high-

level language all the time. When code written in a high level language is compiled into

assembly, the length of the code increases substantially. For example, if an assembly program

takes up 50 lines, the same program written in C might take 150 lines after it is compiled. For

this reason, code written in assembly almost always executed faster and uses less memory than

high-level language code.

1

CONTENTS

V
UNIT-V: FPGA

2

 Introduction 2

 Unit-V notes 2

 Solved Problems

 Part A Questions (2 marks) 38

 Part B Questions (10 marks) 40

2

UNIT V

FPGA

5.1 Introduction to Field Programmable Gate Arrays – CPLD Vs FPGA – Types of FPGA –

Xilinx, XC3000 series - Configurable logic Blocks (CLB) – Input / Output Block (IOB) –

Programmable Interconnect Point (PIP) – Xilinx 4000 series – HDL programming –overview of

Spartan 3E and Virtex II pro FPGA boards- case study

Introduction to Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are digital ICs (Integrated Circuits) that enable the

hardware design engineer to program a customized Digital Logic as per his/her requirements.

The term “Field Programmable” implies that the Digital Logic of the IC is not fixed during its

manufacturing (or fabrication) but rather it is programmed by the end-user (designer).

In order to provide this programmability, an FPGA consists of Configurable (or Programmable)

Logic Blocks and configurable interconnects between these blocks. This configurable Logic and

the Interconnections (Routing) of FPGAs makes them general purpose and flexible but at the

same time, it also makes them slow and power hungry when compared to a similar calibre ASIC

with Standard Cells.

It has been more than three decades since the introduction of FPGAs into the market and in this

long span, they have undergone a severe technological advancement and gained a continuously

growing popularity.

PLD (Programmable Logic Device)

Before diving into the main topic, I want to briefly discuss the concept of Programmable Logic

Devices. So, what is a PLD. It is an IC containing a large number of Logic gates and Flip-flops

that can be configured by the user to implement a wide variety of functions.

The simplest of Programmable Logic Devices consists of an array of AND & OR gates and the

logic of these gates and their interconnections can be configured by a programming process.

3

PLDs are particularly useful when an engineer wants to implement a customized logic and is

restricted by the pre-configured integrated circuits. PLDs provide a way to implement a custom

digital circuit through the power of hardware configuration rather than implementing it using a

software.

Different Types of PLDs

Basically, PLDs can be categorized into three types. They are:

 Simple Programmable Logic Devices (SPLD)

 Complex Programmable Logic Devices (CPLD)

 Field Programmable Gate Arrays (FPGA)

The Simple Programmable Logic Devices are further divided into:

 Programmable Logic Array (PLA)

 Programmable Array Logic (PAL)

 Generic Array Logic (GAL)

Let us now see some basic details about all these PLDs.

Programmable Logic Array (PLA)

A PLA consists of an AND gate plane with programmable interconnects and an OR gate plane

with programmable interconnects. The following is a simple four input – four output PLA with

AND & OR gates.

4

Any input can be connected to any AND gate by connecting the horizontal and vertical

interconnect lines. The outputs from different AND gates can then be applied to any of the OR

gates with programmable interconnects.

5

Fig PLA circuits

Programmable Array Logic (PAL)

A PAL is similar to the PLA but the difference is that in PAL, only the AND gate plane is

programmable while the OR gate plane is fixed during fabrication. Even though PALs are less

flexible than PLAs, they eliminate the time delays associated with programmable OR Gates.

6

Fig. PAL Circuits

7

Generic Array Logic (GAL)

Architecture wise, a GAL is similar to a PAL but the difference lies in programmable structure.

PALs use PROM, which is one-time programmable, while GAL uses EEPROM, which can be

reprogrammed.

5.2 CPLD Vs FPGA

CPLD is often used for simple logic applications. It contains only a few blocks of logic and

reaches up to 100. Having said that, CPLDs are considered as ‘coarse-grain’ type of

devices. CPLDs are cheap and it also offers a much faster input to output duration because

of its simpler, ‘coarse grain’ architecture.

 FPGAs are cheaper per gate but expensive when it comes to package.

 Working with FPGAs requires special procedures as it is RAM based. To program the

device, you have to first describe the ‘logic function’ with the use of computer, either by

drawing a schematic or simply describing the function on a text file.

 Compilation of the ‘logic function’ usually requires a software. It creates a binary file to

be downloaded into the FPGA and then the chip will behave just what you have instructed

in the ‘logic function’.

1. FPGA contains up to 100,000 of tiny logic blocks while CPLD contains only a few blocks

of logic that reaches up to a few thousands.

2. In terms of architecture, FPGAs are considered as ‘fine-grain’ devices while CPLDs are

‘coarse-grain’.

3. FPGAs are great for more complex applications while CPLDs are better for simpler

ones.

4. FPGAs are made up of tiny logic blocks while CPLDs are made of larger blocks.

5. FPGA is a RAM-based digital logic chip while CPLD is EEPROM-based.

6. Normally, FPGAs are more expensive while CPLDs are much cheaper.

7. Delays are much more predictable in CPLDs than in FPGAs.

8

Complex Programmable Logic Devices (CPLD)

Moving up from SPLD devices, we get CPLD. It is developed on top of SPLD devices to create

mush larger and complex designs. A CPLD consists of a number logic blocks (or functional

blocks), which internally consists of either a Pal or a PAL along with a Macrocell.

Macrocell consists of any additional circuitry and signal polarity control to provide true signal or

its complement

Field Programmable Gate Arrays (FPGA)

Complexity wise, CPLD are much more complex than SPLDs. But FPGA are even more

complex than CPLDs. The architecture of an FPGA is completely different as it consists of

programmable Logic Cells, programmable interconnects and programmable IO blocks.

Field Programmable Gate Arrays or FPGAs in short are pre-fabricated Silicon devices that

consists of a matrix of reconfigurable logic circuitry and programmable interconnects arranged in

a two-dimensional array. The programmable Logic Cells can be configured to perform any

digital function and the programmable interconnects (or switches) provide the connections

among different logic cells.

https://www.electronicshub.org/wp-content/uploads/2020/01/CPLD-Structure.jpg
https://www.electronicshub.org/wp-content/uploads/2020/01/CPLD-Structure.jpg

9

Using an FPGA, you can implement any custom design by specifying the logic or function of

each logic block and setting the connection of each programmable switch. Since this process of

designing a custom circuit is done in the field rather than in a fab, the device is known as “Field

Programmable”.

The following image shows a typical internal structure of an FPGA in a very broad sense.

As you can see, the core of the FPGA is made up of configurable logic cells and programmable

interconnections. These are surrounded by a number of programmable IO blocks, which are used

to talk to the external world.

10

Components of an FPGA

Let us now take a closer look at the structure of an FPGA. Typically, an FPGA consists of

three basic components. They are:

 Programmable Logic Cells (or Logic Blocks) – responsible for implementing the core

logic functions.

 Programmable Routing – responsible for connecting the Logic Blocks.

 IO Blocks – which are connected to the Logic Blocks through the routing and help to

make external connections

Logic Block

The Logic Block in Xilinx based FPGAs are called as Configurable Logic Blocks or CLB while

the similar structures in Altera based FPGAs are called Logic Array Blocks or LAB. Let us use

the term CLB for this discussion. A CLB is the basic component of an FPGA, which provides

both the logic and storage functionalities. The basic logic block can be anything like a transistor,

https://www.electronicshub.org/basic-electronic-components/

11

a NAND gate, Multiplexors, Look-up Table (LUT), a PAL like structure or even a processor.

Both Xilinx and Altera use Look-up Table (LUT) based logic blocks to implement the logic as

well as the storage functionalities.

A Logic Block can be made up of a single Basic Logic Element or a set of interconnected Basic

Logic Elements, where a Basic Logic Element is a combination of a Look-up table (which is in

turn made up of SRAM and Multiplexors) and a Flip-flop

A LUT with ‘n’ inputs consists of 2n configuration bits, which are implemented by SRAM Cells.

Using these 2n SRAM Bits, the LUT can be configured to implement any logical function.

12

Routing

If the computational functionality is provided by the Logic Blocks, then the programmable

routing network is responsible for interconnection these logic blocks. The Routing Network

provides interconnections between one logic block to other as well as between the logic block

and the IO Block to completely implement a custom circuit.

Basically, the routing network consists of connecting wires with programmable switches, which

can be configured using any of the programming technologies. There are basically two types of

routing architectures. They are:

 Island Style Routing (also known as Mesh Routing)

 Hierarchical Routing

In island style routing architecture, the logic blocks are arranged in a two-dimensional array and

are interconnected using a programmable routing network. This type of routing is widely used in

commercial FPGAs.

Many logic blocks are confined to a local set of connections and hierarchical routing architecture

makes use of this feature by dividing the logic blocks into several groups or clusters. If the logic

blocks are residing in the same cluster, then the hierarchical routing connects them in a low level

of hierarchy.

13

5.3 Types of FPGA

FPGA Programming Technologies

We have talked about the reprogrammable architecture of FPGAs quite a bit but now let us see

some of the most commonly used programming techniques that is responsible for such

reconfigurable architecture.

The following are three of the well-known programming technologies used in FPGAs.

 SRAM

 EEPROM / Flash

 Anti-Fuse

https://www.electronicshub.org/wp-content/uploads/2020/01/Island-Style-Routing.jpg
https://www.electronicshub.org/wp-content/uploads/2020/01/Island-Style-Routing.jpg

14

Other technologies include EPROM and Fusible Link but they are used in CPLDs and other

PLDs but not in FPGAs, Hence, let us keep the discussion limited to FPGA related programming

technologies.

SRAM

We know that there are two types of semiconductor RAM called the SRAM and DRAM. SRAM

is short for Static RAM while DRAM is short for Dynamic Ram. SRAM is designed using

transistors and the term static means that the value loaded on a basic SRAM Memory Cell will

remain the same until deliberately changed or when the power is removed.

A typical 6 transistor SRAM Cell to store 1 bit is shown in the following image.

This is in contrast to the DRAM, which consists of a combination of a transistor and a capacitor.

The term Dynamic refers to the fact that the value loaded in the basic DRAM Memory Cell is

15

valid until there is charge in the capacitor. As capacitor loses its charge over time, the memory

cell has to be periodically recharged to maintain the charge. This is also known as refreshing.

Many FPGA vendors implement Static Memory Cells in SRAM based FPGAs for programming.

SRAM based FPGAs are used to program both the logic cells and the interconnects and they

have become quite predominant due to their re-programmability and use of CMOS technology,

which is known for its low dynamic power consumption, high speed and tighter integration.

EEPROM / Flash

A close alternative to SRAM based programming technology is based on EEPROM or Flash

programming technologies. The main advantage of flash-based programming is its non-volatile

nature. Even though flash supports re-programmability, the number of times this can be done is

very small when compared to an SRAM technology.

https://www.electronicshub.org/wp-content/uploads/2020/01/SRAM-Programming.jpg
https://www.electronicshub.org/wp-content/uploads/2020/01/SRAM-Programming.jpg

16

Anti-Fuse

The anti-fuse programming technology is an old technique of producing one-time programmable

devices. They are implemented using a link called the antifuse, which in its unprogrammed state

has a very high resistance and can be considered an open circuit.

When programming, a high voltage and current is supplied to the input. As a result, the antifuse,

which is initially in the form of amorphous silicon (basically an insulator with very high

resistance) linking two metal tracks, comes to life by converting to a conducting polysilicon.

When compared to the other two technologies, the antifuse one occupies the least amount of

space but comes only as one-time programmable option.

Property OTP FPGA MTP FPGA

Speed smaller larger

Power Consumption lower higher

Working Environment

(Radiation)

Radiation hardened NO radiation hardened

Design Cycle Programmed once only Many times

Price Almost the same Almost the same

Reliability More (single Chip) Less (2 Chips, FPGA & PROM)

Security More secure Less secure

17

5.4 Xilinx

Xilinx is the inventor of the FPGA, programmable SoCs, and now, the

ACAP. Xilinx delivers the most dynamic processing technology in the industry.

Xilinx, Inc. (/ˈzɪlɪŋks/ ZEE-links) was an American technology and semiconductor company

that primarily supplied programmable logic devices. The company was known for

inventing the first commercially viable field-programmable gate array (FPGA) and

creating the first fabless manufacturing model,

Xilinx was co-founded by Ross Freeman, Bernard Vonderschmitt, and James V Barnett II

in 1984 and the company went public on the NASDAQ in 1989. AMD announced its

acquisition of Xilinx in October 2020 and the deal was completed on February 14, 2022

through an all-stock transaction worth an estimated $50 billion.

Before 2010, Xilinx offered two main FPGA families: the high-performance Virtex series

and the high-volume Spartan series, with a cheaper EasyPath option for ramping to

volume production. The company also provides two CPLD lines: the CoolRunner and the

9500 series. Each model series has been released in multiple generations since its launch.

 With the introduction of its 28 nm FPGAs in June 2010, Xilinx replaced the high-volume

Spartan family with the Kintex family and the low-cost Artix family.

5.5 XC3000 series

Features

Complete line of four related Field Programmable Gate Array product families - XC3000A,

XC3000L, XC3100A, XC3100L

 • Ideal for a wide range of custom VLSI design tasks - Replaces TTL, MSI, and other PLD logic

- Integrates complete sub-systems into a single package - Avoids the NRE, time delay, and risk

of conventional masked gate arrays

• High-performance CMOS static memory technology - Guaranteed toggle rates of 70 to 370

MHz, logic delays from 7 to 1.5 ns - System clock speeds over 85 MHz - Low quiescent and

active power consumption

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/Semiconductor
https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Fabless_manufacturing
https://en.wikipedia.org/wiki/Ross_Freeman
https://en.wikipedia.org/wiki/Bernard_Vonderschmitt
https://en.wikipedia.org/wiki/James_V._Barnett_II
https://en.wikipedia.org/wiki/Nasdaq
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/Virtex_(FPGA)
https://en.wikipedia.org/wiki/Complex_programmable_logic_device

18

 • Flexible FPGA architecture - Compatible arrays ranging from 1,000 to 7,500 gate complexity -

Extensive register, combinatorial, and I/O capabilities - High fan-out signal distribution, low-

skew clock nets - Internal 3-state bus capabilities - TTL or CMOS input thresholds - On-chip

crystal oscillator amplifier

 • Unlimited reprogrammability - Easy design iteration - In-system logic changes

• Extensive packaging options - Over 20 different packages - Plastic and ceramic surface-mount

and pin-gridarray packages - Thin and Very Thin Quad Flat Pack (TQFP and VQFP) options

 • Ready for volume production - Standard, off-the-shelf product availability - 100% factory pre-

tested devices - Excellent reliability record

Complete Development System - Schematic capture, automatic place and route - Logic and

timing simulation - Interactive design editor for design optimization - Timing calculator -

Interfaces to popular design environments like Viewlogic, Cadence, Mentor Graphics, and others

5.6 Configurable logic Blocks

A configurable logic block (CLB) is the basic repeating logic resource on an FPGA. When

linked together by routing resources, the components in CLBs execute complex logic functions,

implement memory functions, and synchronize code on the FPGA.

CLBs contain smaller components, including flip-flops, look-up tables (LUTs), and multiplexers.

 Flip-Flop—A circuit capable of two stable states that represents a single bit. A flip-flop

is the smallest storage resource on the FPGA. Each flip-flop in a CLB is a binary register

used to save logic states between clock cycles on an FPGA circuit.

 Look-up Table (LUT)—A collection of gates hardwired on the FPGA. An LUT stores a

predefined list of outputs for every combination of inputs. LUTs provide a fast way to

retrieve the output of a logic operation because possible results are stored and then

referenced rather than calculated. The LUTs in a CLB can also implement FIFOs and

memory items in LabVIEW.

 Multiplexer—A circuit that selects between two or more inputs and then returns the

selected input.

19

When you compile code to run on an FPGA target, LabVIEW implements much of the code

using flip-flops, LUTs, and multiplexers.

Figure Configurable logic Blocks

5.7 Input / Output Block (IOB)

The input/output block (IOB) is used for communication between the problem program and the

system. It provides the addresses of other control blocks, and maintains information about the

channel program, such as the type of chaining and the progress of I/O operations. You must

define the IOB and specify its address as the only parameter of the EXCP or EXCPVR macro

instruction.

The input/output block (IOB) is not automatically constructed by a macro instruction; it must be

defined as a series of constants and be on a word boundary. For unit-record and tape devices, the

IOB is 32 bytes long. For direct access, teleprocessing, and graphic devices, 8 additional bytes

must be provided. Use the system mapping macro IEZIOB, which expands into a DSECT, to

help in constructing an IOB. IEZIOB fields that are not described here are not part of the

programming interface.

20

In Figure 1 the shaded areas indicate fields in which you must specify information. The other

fields are used by the system and must be defined as all zeros. You cannot place information into

these fields, but you can examine them.

You do not have to set the following IOB fields to any particular value before issuing EXCP

because the system itself sets them:

 IOBSENS0

 IOBSENS1

 IOBECBCC

 IOBCSW

 IOBSIOCC

 IOBCMD31

https://www.ibm.com/docs/en/zos/2.2.0?topic=fields-inputoutput-block-iob#iobflds__iobf

21

. Figure Input/Output Block (IOB) Format

IOBFLAG1 (1 byte)

Set bit positions 0, 1, 6, and 7. One-bits in positions 0 and 1 (IOBDATCH and

IOBCMDCH) indicate data chaining and command chaining, respectively. (If you

22

specify both data chaining and command chaining, the system does not use error

recovery routines except for the direct access and tape devices.) If an I/O error occurs

while your channel program executes, a failure to set the chaining bits in the IOB that

correspond to those in the CCW might make successful error recovery impossible. The

integrity of your data could be compromised.

A one-bit in position 6 (IOBUNREL) indicates that the channel program is not a related

request; that is, the channel program is not related to any other channel program. See bits

2 and 3 of IOBFLAG2 below.

If you intend to issue an EXCP or XDAP macro with a BSAM, QSAM, or BPAM DCB,

you should turn on bit 7 (IOBSPSVC) to prevent access-method appendages from

processing the I/O request.

IOBFLAG2 (1 byte)

If you set bit 6 in the IOBFLAG1 field to zero, bits 2 and 3 (IOBRRT3 and

IOBRRT2) in this field must then be set to one of the following:

 00, if any channel program or appendage associated with a related request might

modify this IOB or channel program.

 01, if the conditions requiring a 00 setting do not apply, but the CHE or ABE

appendage might retry this channel program if it completes normally or with the

unit-exception or wrong-length-record bits on in the CSW.

 10 in all other cases.

The combinations of bits 2 and 3 represent related requests,known as type 1 (00), type 2

(01), and type 3 (10). The type you use determines how much the system can overlap the

processing of related requests. Type 3 allows the greatest overlap, normally making it

possible to quickly reuse a device after a channel-end interruption. (Related requests that

were executed on a pre-MVS system are executed as type-1 requests if not modified.)

23

IOBSENS0 and IOBSENS1 (2 bytes)

are set by the system when a unit check occurs. These are the first two sense bytes.

Occasionally, the system is unable to obtain any sense bytes because of unit checks

when sense commands are issued. In this case, the system simulates sense bytes by

moving X'10FE' to IOBSENS0 and IOBSENS1.

The first six of these 16 bits have these device-independent meanings:

1... Command reject

.1.. Intervention required

..1. Bus out check

...1 Equipment check

.... 1... Data check

.... .1.. Overrun

The last ten of these 16 bits have device-dependent meanings. See appropriate hardware

documentation.

If you wish to retrieve more than two sense bytes, supply an IOBE and IEDB

OBECBCC (1 byte)

The first byte of the completion code for the channel program. The system places this

code in the high-order byte of the event control block when the channel program is

posted complete.

OBECBPT (3 bytes)

The address of the 4-byte event control block (ECB) you have provided.

IOBFLAG3 (1 byte) and IOBCSW (7 bytes)

The system stores status information in these eight bytes

IOBSIOCC (1 byte)

If the channel program uses format 0 CCWs, bits 2 and 3 contain the start subchannel

(SSCH) condition code for the instruction the system issues to start the channel

program.

24

If this is a format 1 CCW channel program or is a zHPF channel program, then field

IOBSIOCC is redefined as field IOBSTART, which contains the four byte starting

address of the channel program to be executed

IOBSTRTB (3 bytes)

If the channel program uses format 0 CCWs, the three byte starting address of the

channel program to be executed.

IOBFLAG4 (1 byte)

Set bit 3 (IOBCEF) to indicate whether you are supplying an IOB common extension

(IOBE). If this bit is 1, then register 0 contains the IOBE address

IOBDCBPT (3 bytes)

The address of the DCB of the data set to be read or written by the channel program.

Reserved (1 byte)

Used by the system.

IOBRESTR+1 (3 bytes)

If a related channel program is permanently in error, this field is used to chain together

IOBs that represent dependent channel programs.

IOBINCAM (2 bytes)

For magnetic tape, the amount by which the system increments the block count

(DCBBLKCT) field in the device-dependent portion of the DCB. You can alter these

bytes at any time. For forward operations, these bytes should contain a binary positive

integer (usually +1); for backward operations, they should contain a binary negative

integer.

IOBERRCT (2 bytes)

Used by the system.

IOBSEEK (first byte, M)

For direct access devices, the extent entry in the data extent block that is associated

with the channel program (0 indicates the first entry; 1 indicates the second, and so

forth).

IOBSEEK (last 7 bytes, BBCCHHR)

For direct access devices, the seek address for your channel program.

25

5.8 Programmable Interconnect Point (PIP)

Programmable Interconnect Points (PIPs)

•Also known as Configurable Interconnect Points (CIPs)

Transmission gate connects to 2 wire segments–Controlled by configuration memory bit

•0 = wires disconnected

•1 = wires connected

PIPs

Break-point PIP–Connect or isolate 2 wire segments

•Cross-point PIP–Turn corners•Multiplexer PIP–Directional and buffered–Select 1-of-Ninputs for

output

•Decoded MUX PIP –Nconfig bits select from 2Ninputs•Non-decoded MUX PIP – 1 config bit

per input

•Compound cross-point PIP–Collection of 6 break-point PIPs

•Can route to two isolated signal nets.

5.9 Xilinx 4000 series

The XC4000E family of high-performance, high-density Field Programmable Gate Arrays

(FPGAs) provides the benefits of custom CMOS VLSI, while avoiding the initial cost, time

delay, and inherent risk of a conventional masked gate array. The XC4000E family combines

architectural versatility, on-chip Select-RAM memory with edge-triggered and dual-port modes,

increased speed, abundant routing resources, and new, sophisticated software to achieve fully

automated imple-mentation. The FPGAs are customized by loading configuration data into the

internal memory cells. The FPGA can either actively read its configuration data out of external

serial or byte-parallel PROM (master mode), or the configuration data can be written into the

FPGA (slave and peripheral mode). The XC4000E family can run at synchronous system clock

rates of up to 70 MHz and internal performance in excess of 150 MHz.

26

Features

Third Generation Field-Programmable Gate Arrays

Select-RAM TM memory: on-chip ultra-fast RAM with - synchronous write option -

dual-port RAM option

Fully PCI compliant

Abundant flip-flops

Flexible function generators

Dedicated high-speed carry-propagation circuit

Wide edge decoders (four per edge)

Hierarchy of interconnect lines

Internal 3-state bus capability

8 global low-skew clock or signal distribution network

Flexible Array Architecture

Programmable logic blocks and I/O blocks

Programmable interconnects and wide decoders

Sub-micron CMOS Process

High-speed logic and Interconnect

Low power consumption

Systems-Oriented Features

IEEE 1149.1-compatible boundary scan logic support

Programmable output slew rate (2 modes)

Programmable input pull-up or pull-down resistors

12-mA sink current per output

24-mA sink current per output pair

Configured by Loading Binary File

Unlimited reprogrammability

Six programming modes

Readback capability

27

Backward Compatible with XC4000 Family

XACTstep Development System runs on ‘386/’486/ Pentium-type PC, Sun-4, and Hewlett-

Packard 700 series

Interfaces to popular design environments including VIEWlogic, Mentor Graphics and

OrCAD

Fully automatic partitioning, placement and routing

Interactive design editor for design optimization

Unified Libraries, including 288 soft macros and 34 Relationally Placed Macros (RPMs)

RAM/ROM compiler

The XC4000E family is supported by powerful and sophisticated software, covering every aspect

of design from schematic or behavioral entry, floor planning, simulation, automatic block

placement and routing of interconnects, to the creation, downloading, and read back of the

configura-tion bit stream.

The Xilinx XC4000E family includes three major configurable elements: configurable logic

blocks (CLBs), input/output blocks, and interconnects.

 The CLBs provide the functional elements for constructing user's logic. The IOBs provide the

interface between the package pins and internal signal lines.

 The programmable interconnect resources provide routing paths to connect the inputs and

outputs of the CLBs and IOBs onto the appropriate networks.

 Customized configuration is established by programming internal static memory cells that

determine the logic functions and internal connections implemented in the FPGA.

28

Specifications

Device XC4013E

Aproximate Gate Count 13,000

CLB Matrix 24 x 24

Number of CLBs 567

Number of Flip-Flops 1,536

Max. Decode Inputs per Side 72

Max. RAM Bits 18,432

Number of IOBs 192

Horizontal Longlines 48

TBUFs per Longlines 26

PROM Size (bits) 247,96

XC4000E Series SRAM FPGA Overview

The XC4000E family of high-performance, high-density Field Programmable Gate Arrays

(FPGAs) provides the benefits of custom CMOS VLSI, while avoiding the initial cost, time

delay, and inherent risk of a conventional masked gate array. The XC4000E family combines

architectural versatility, on-chip Select-RAM memory with edge-triggered and dual-port modes,

increased speed, abundant routing resources, and new, sophisticated software to achieve fully

automated imple-mentation. The FPGAs are customized by loading configuration data into the

internal memory cells. The FPGA can either actively read its configuration data out of external

serial or byte-parallel PROM (master mode), or the configuration data can be written into the

FPGA (slave and peripheral mode). The XC4000E family can run at synchronous system clock

rates of up to 70 MHz and internal performance in excess of 150 MHz.

Features

Third Generation Field-Programmable Gate Arrays

Select-RAM TM memory: on-chip ultra-fast RAM with - synchronous write option -

dual-port RAM option

Fully PCI compliant

29

Abundant flip-flops

Flexible function generators

Dedicated high-speed carry-propagation circuit

Wide edge decoders (four per edge)

Hierarchy of interconnect lines

Internal 3-state bus capability

8 global low-skew clock or signal distribution network

Flexible Array Architecture

Programmable logic blocks and I/O blocks

Programmable interconnects and wide decoders

Sub-micron CMOS Process

High-speed logic and Interconnect

Low power consumption

Systems-Oriented Features

IEEE 1149.1-compatible boundary scan logic support

Programmable output slew rate (2 modes)

Programmable input pull-up or pull-down resistors

12-mA sink current per output

24-mA sink current per output pair

Configured by Loading Binary File

Unlimited reprogrammability

Six programming modes

Readback capability

Backward Compatible with XC4000 Family

XACTstep Development System runs on ‘386/’486/ Pentium-type PC, Sun-4, and Hewlett-

Packard 700 series
Interfaces to popular design environments including VIEWlogic, Mentor Graphics and

OrCAD

Fully automatic partitioning, placement and routing

Interactive design editor for design optimization

Unified Libraries, including 288 soft macros and 34 Relationally Placed Macros (RPMs)

RAM/ROM compiler

The XC4000E family is supported by powerful and sophisticated software, covering every aspect

of design from schematic or behavioral entry, floorplanning, simulation, automatic block

placement and routing of interconnects, to the creation, downloading, and readback of the

30

configura-tion bit stream. The Xilinx XC4000E family includes three major configurable

elements: configurable logic blocks (CLBs), input/output blocks, and interconnects. The CLBs

provide the functional elements for constructing user's logic. The IOBs provide the interface

between the package pins and internal signal lines. The programmable interconnect resources

provide routing paths to connect the inputs and outputs of the CLBs and IOBs onto the

appropriate networks. Customized configuration is established by programming internal static

memory cells that determine the logic functions and internal connections implemented in the

FPGA.

Specifications

Device XC4013E

Aproximate Gate Count 13,000

CLB Matrix 24 x 24

Number of CLBs 567

Number of Flip-Flops 1,536

Max. Decode Inputs per Side 72

Max. RAM Bits 18,432

Number of IOBs 192

Horizontal Longlines 48

TBUFs per Longlines 26

PROM Size (bits) 247,960

Configurable Logic Blocks (CLB)

The principle CLB elements are shown in Figure . Each CLB contains a pair of flip-flops and

two independent 4-input function generators. These function generators have a good deal of

flexabilty as most combinatorial logic functions need less than four inputs. Thirteen CLB inputs

and four CLB outputs provide access to the functional flip-flops. Configurable Logic Blocks

implement most of the logic in an FPGA. The principal CLB elements are shown in Figure 1.

Two 4-input function generators (F and G) offer unre-stricted versatility. Most combinatorial

logic functions need four or fewer inputs. However, a third function generator (H) is provided.

The H function generator has three inputs. One or both of these inputs can be the outputs of F

and G; the other input(s) are from outside the CLB. The CLB can therefore implement certain

functions of up to nine variables, like parity check or expandable-identity comparison of two sets

of four inputs.

31

Figure Block Diagram of XC4000 Families Configuration Logic Block (CLB)

Each CLB contains two flip-flops that can be used to store the function generator outputs.

However, the flip-flops and function generators can also be used independently. DIN can be used

as a direct input to either of the two flip-flops. H1 can drive the other flip-flop through the H

function gen-erator. Function generator outputs can also be accessed from outside the CLB,

using two outputs independent of the flip-flop outputs. This versatility increases logic density

and simplifies routing. Thirteen CLB inputs and four CLB outputs provide access to the function

generators and flip-flops. These inputs and outputs connect to the programmable interconnect

resources outside the block.

5. 10 HDL LANGUAGE

Advances in semiconductor technology continue to increase the power and complexity of digital

systems. To design such systems requires a strong knowledge of Application Specific Integrated

Circuits (ASICs) and Field Programmable Gate Arrays (FPGAs), as well as the CAD tools

required. Hardware Description Language (HDL) is an essential CAD tool that offers designers

32

an efficient way for implementing and synthesizing the design on a chip. HDL Programming

Fundamentals: VHDL and Verilog teaches students the essentials of HDL and the functionality

of the digital components of a system. Unlike other texts, this book covers both IEEE

standardized HDL languages: VHDL and Verilog. Both of these languages are widely used in

industry and academia and have similar logic, but are different in style and syntax. By learning

both languages students will be able to adapt to either one, or implement mixed language

environments, which are gaining momentum as they combine the best features of the two

languages in the same project. The text starts with the basic concepts of HDL, and covers the key

topics such as data flow modeling, behavioral modeling, gate-level modeling, and advanced

programming. Several comprehensive projects are included to show HDL in practical

application, including examples of digital logic design, computer architecture, modern

bioengineering, and simulation.

Digital circuits consist primarily of interconnected transistors. We design and analyze these

circuits with the aid of a hierarchical structure: we could, in theory, interpret a central processing

unit (CPU) as a vast sea of transistors, but it is much easier to organize transistors into logic

gates, logic gates into adders or registers or timing modules, registers into memory banks, and so

forth.

To describe digital circuits, textual language is used that is specifically intended to clearly and

concisely capture the defining features of digital design.

Such languages are called hardware description languages (HDLs).

The most popular hardware description languages are Verilog and VHDL. They are widely used

in conjunction with FPGAs, which are digital devices that are specifically designed to facilitate

the creation of customized digital circuits.

Hardware description languages allow you to describe a circuit using words and symbols, and

then development software can convert that textual description into configuration data that is

loaded into the FPGA in order to implement the desired functionality.

entity Circuit_1 is

 Port (a : in STD_LOGIC;

 b : in STD_LOGIC;

 out1 : out STD_LOGIC);

33

 end Circuit_1;

 architecture Behavioral of Circuit_1 is

 begin

out1 <= (a and b);

 end Behavioral;

NOT gate and half adder HDL Programs

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

 ENTITY not1 IS

 PORT(a : IN STD_LOGIC; b : OUT STD_LOGIC;);

 END not1;

 ARCHITECTURE behavioral OF not1 IS

BEGIN b <= NOT a;

 END behavioral;

entity HALF_ADDER is

port (A, B: in BIT;

 SUM, CARRY: out BIT);

 end HALF_ADDER;

34

5.11 overview of Spartan 3E

The XA Spartan®-3E FPGA is the world’s lowest cost logic optimized full feature platform of

five devices with system gates ranging from 100K to 1.6M gates, and I/Os ranging from 66 to

376 I/Os, with density migration.

XA Spartan-3E FPGA Family Benefits

Industry’s lowest total cost

 Large selection of device/package options

 Industry’s most comprehensive IP library

 Leading embedded and DSP solutions

 Efficient, cost-effective board designs

 Allows use of fewer components

 Increased system reliability by eliminating external components

Industry's first robust anti-cloning security for low cost FPGAs

Multiple Domain-Optimized Platforms Spartan-3 Generation

The Spartan®-3 Generation of FPGAs offers a choice of five platforms, each delivering a unique

cost-optimized balance of programmable logic, connectivity, and dedicated hard IP for your low-

cost applications.

 Spartan-3A DSP– DSP Optimized

o For applications where integrated DSP MACs and expanded memory are required

o Ideal for designs requiring low cost FPGAs for signal processing applications

such as military radio, surveillance cameras, medical imaging, etc.

 Spartan-3AN – Non-volatile

https://www.xilinx.com/support/documentation-navigation/silicon-devices/mature-products/spartan-3a-dsp.html
https://www.xilinx.com/support/documentation-navigation/silicon-devices/mature-products/spartan-3an.html

35

o For applications where non-volatile, system integration, security, large user flash

are required

o Ideal for space-critical or secure applications as well as low cost embedded

controllers

 Spartan-3A – I/O Optimized

o For applications where I/O count and capabilities matter more than logic density

o Ideal for bridging, differential signaling and memory interfacing applications,

requiring wide or multiple interfaces and modest processing

 Spartan-3E – Logic Optimized

o For applications where logic densities matter more than I/O count

o Ideal for logic integration, DSP co-processing and embedded control, requiring

significant processing and narrow or few interfaces

 Spartan-3 – For Highest Density and Pin-Count Applications

o For applications where both high logic density and high I/O count are important

o Ideal for highly-integrated data-processing applications

5.12 Virtex II pro FPGA boards- case study

Target Evolvable Hardware

The target EHW is implemented as an OPB slave peripheral module – see Fig. 2. Interfacing

with the OPB bus has been simplified by the use of a Xilinx IP Interface core (IPIF). This

https://www.xilinx.com/support/documentation-navigation/silicon-devices/mature-products/spartan-3a.html
https://www.xilinx.com/support/documentation-navigation/silicon-devices/mature-products/spartan-3e.html
https://www.xilinx.com/support/documentation-navigation/silicon-devices/mature-products/spartan-3.html

36

provides a simpler interface standard, the Xilinx IPIC, for the user module.Control and

configuration of this module are undertaken through register write operations. Genome values

are written to registers which are again connected to the configuration inputs of the functional

unit array. Registers are also

Figure The architecture of target EHW system

Functional unit array

The functional unit array (FUA) is a general structure used for EHW. It is based on the principle

that the configuration of the FPGA itself is not changed, but a virtual circuit which is

implemented on top of it can be reconfigured. Hence the names ”Virtual FPGA” or ”Virtual

Reconfigurable Circuit

Our FUA consists of a fixed-size array of functional units. The array consists of C columns of R

units from input to output. Each unit has I inputs, each of which can be connected to any output

in the previous column. The unit’s output is a result of any of F functions. The function of each

unit and its inputs are configurable. They are determined by evolution, in the way that each

individual’s binary genome is sent to the FUA and mapped to the configuration lines. Fitness is

then calculated by feeding a number of input vectors on the inputs of the first column, and

reading the results from the outputs of the last column. The array is constructed in a pipelined

37

fashion, that is, registers are connected to the outputs of each layer. Currently, this is not

exploited for fitness evaluation. Only one input vector is evaluated at a time.

Figure The architecture of the Functional unit array subsystem.

Table Functions used by units in the image recognition task. Inputs are A and B, ouput is O. C1

and C2 are constants available to each unit.

38

2 mark questions and answers.

1. What is FPGA?

 Field Programmable Gate Arrays (FPGAs) are digital Integrated Circuit that enable the

hardware design engineer to program a customized Digital Logic as per requirements.

2. What is CPLD?

 CPLD is an integrated circuit that helps to implement digital systems whereas FPGA is an

integrated circuit designed to be configured by a customer or a designer after manufacturing.

3. What are the Types of Programmable Logic Devices?

Programmable Logic Array (PLA)

Programmable Array Logic (PAL)

Generic Array Logic (GAL)

4. What is CLB ?

A configurable logic block (CLB) is the basic repeating logic resource on an FPGA.

When linked together by routing resources, the components in CLBs execute complex

logic functions, implement memory functions, and synchronize code on the FPGA.

5. What is PIP in FPGA?

Transmission Gates connects to two wire segments.

0- Wire disconnected

1- Wire connected

6. Write bout Xilinx 4000 series.

 The Xilinx XC4000E family includes three major configurable elements: configurable

logic blocks (CLBs), input/output blocks, and interconnects. The CLBs provide the

functional elements for constructing user's logic. The IOBs provide the interface between the

package pins and internal signal lines.

7. What is HDL?

Digital circuits consist primarily of interconnected transistors. We design and analyze

these circuits with the aid of a hierarchical structure: we could, in theory, interpret a

central processing unit (CPU) as a vast sea of transistors, but it is much easier to organize

39

transistors into logic gates, logic gates into adders or registers or timing modules,

registers into memory banks, and so forth..

Another way to describe digital circuits is to use a textual language that is specifically intended

to clearly and concisely capture the defining features of digital design.

Such languages exist, and they are called hardware description languages (HDLs).

8. What do HDLs do?

The most popular hardware description languages are Verilog and VHDL. They are

widely used in conjunction with FPGAs, which are digital devices that are specifically

designed to facilitate the creation of customized digital circuits.

9. What is the difference between Programming Languages vs. Hardware Description

Languages?

Statements in HDL code involve parallel operation, whereas programming languages

represent sequential operation.

10. What is the use of Spartan®-3 Generation of FPGAs

The Spartan-3 Generation of FPGAs offers a choice of five platforms, each delivering a

unique cost-optimized balance of programmable logic, connectivity, and dedicated hard

IP for your low-cost applications.

11. What are the HDL languages?

1. VHLD, 2 Verilog

12. What is the difference between VHLD and Verilog?

. Both of these languages are widely used in industry and academia and have similar

logic, but are different in style and syntax.

13. What is minimum and maximum frequency of dcm in spartan-3 series fpga?

Spartan series dcm’s have a minimum frequency of 24 MHZ and a maximum of 248.

14. What are different types of FPGA programming modes?

The modes are Master Parallel, Slave Parallel, Master Serial, Slave Serial, and Boundary

Scan.

https://www.allaboutcircuits.com/technical-articles/getting-started-with-the-verilog-hardware-description-language/
https://www.allaboutcircuits.com/technical-articles/hardware-description-langauge-getting-started-vhdl-digital-circuit-design/
https://www.allaboutcircuits.com/technical-articles/what-is-an-fpga-introduction-to-programmable-logic-fpga-vs-microcontroller/

40

10 mark questions

1. Write about some of features of FPGA which are are currently used.

2. List out some of synthesizable and non synthesizable constructs

3. Draw and explain general structure of fpga.

4. Write about FPGA design flow

5. Draw a rough diagram of how clock is routed through out FPGA?

6. a),What are dcm's? why they are used?

b) what is slice, clb, lut?

	6. XC 3000 series datasheets (version 3.1). Xilinx Inc., USA, 1998
	INTRODUCTION:

	EVOLUTION OF MICROPROCESSORS:
	Second generation microprocessors:
	Third Generation Microprocessor:
	Fourth Generation Microprocessor:
	Features of 8086:
	Architecture of 8086:
	Execution Unit:

	Register organization of 8086:
	Memory Segmentation for 8086:
	Instruction Set of 8086:

	NIT -III
	3.1 Introduction to micro controllers, Introduction to Microcontrollers:
	3. 2 Functional block diagram,.
	Program Counter and Data Pointer
	A and B CPU Registers
	Flags and the Program Status Word (PSW):
	2. 3 Instruction sets
	3.4 addressing modes Addressing modes of 8051
	Immediate addressing mode
	MOV A, #0AFH MOV R3, #45H
	Register addressing mode
	MOV A, R5 MOV R2, #45H MOV RO, A
	Direct Addressing Mode
	Register indirect addressing Mode
	Indexed addressing mode
	Implied Addressing Mode
	3.5 interrupt structure Interrupts:
	SCON (Serial Control)
	TCON (Timer Control)
	TMOD (Timer Mode)
	TxM0
	Description
	IP (Interrupt Priority)
	Peripheral Data Registers SBUF (Serial Data Buffer)
	3.7 I/O Ports Internal Memory:
	Internal RAM:
	PortO:
	Port l
	Port 2
	Port3
	External Memory
	Connecting External Memory
	3.8 serial communication.
	SCON (Serial Control) (1)
	8051 SERIAL COMMUNICATION
	3.9 Data transfer, manipulation, Control and I/O instructions Data Manipulation Instructions :
	1. The 8051 has 4 I/O ports P0 to P3 each with 8 I/O pins, P0.0 to P0.7,P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7. The one of the port P1 (it understood that P1 means P1.0 to P1.7) as an I/P port for microcontroller 8051, port P0 as an O/P port of micr...
	3. See if any key is pressed by scanning the port P1 by checking all columns for non zero condition.
	5. Initiate a counter to hold the count so that each key is counted.
	7. Otherwise make next row high in port P1.
	9. If any key pressed is found, the [accumulator] content is rotated right through the carry until carry bit sets, while doing this increment the count in the counter till carry is found.
	11. To repeat the procedures go to step 2.
	to check that whether any key is pressed

	mov p1,a ;making all rows of port p1 zero mov a,#0fh
	jz press ;check until any key is pressed
	after making sure that any key is pressed

	in: rrc a ;rotate right with carry until get the carry jc out ;jump on getting carry
	da a ;decimal adjust the contents of counter
	mov p2,a
	3.11 Closed loop control of servo motor
	Two mark questions and Answers
	PLD (Programmable Logic Device)
	Different Types of PLDs
	Programmable Logic Array (PLA)

	A PLA consists of an AND gate plane with programmable interconnects and an OR gate plane with programmable interconnects. The following is a simple four input – four output PLA with AND & OR gates.
	Any input can be connected to any AND gate by connecting the horizontal and vertical interconnect lines. The outputs from different AND gates can then be applied to any of the OR gates with programmable interconnects.
	Fig PLA circuits
	Programmable Array Logic (PAL)
	Generic Array Logic (GAL)
	Complex Programmable Logic Devices (CPLD)
	Field Programmable Gate Arrays (FPGA)

	Components of an FPGA
	Logic Block
	Routing

	FPGA Programming Technologies
	SRAM
	EEPROM / Flash
	Anti-Fuse

	Features
	XA Spartan-3E FPGA Family Benefits
	Multiple Domain-Optimized Platforms Spartan-3 Generation

